Saved Bookmarks
| 1. |
The sum of all real values of x satisfying the equation `(x^2-5x+5)^(x^2+4x-60)=1`is:(1) 3 (2) `-4`(3) 6(4) 5 |
|
Answer» if `a^x = 1` then 3 conditions are `a= -1,0,1` &`x=0 or in` even no `a= 1 ; x in R` `a=-1 ; x in `even no `x=0, a=1` now, `x^2 - 5x + 5 =1` `x^2 - 5x + 4=0 ` `x^2 - 4x - x + 4 = 0` `(x- 4)(x-1) = 0` `x=4,1` now,`x^2 - 5x + 5= -1` `x^2 - 5x + 6= 0` `x^2 - 2x - 3x + 6= 0` `(x-2)(x-3) =0 ` `x= 2,3` `x^2 + 4x - 60` for ` x=2` `4 + 8 - 60 = 48 in ` even number for `x=3` `9 + 12 - 60 = 30 cancel( in) ` even no, so not possible `x^2 + 4x - 60 = 0` `x^2 + 10x - 6x - 60 = 0` `(x+10)(x-6) = 0` `x= -10,6` `x= 4,1,2,-10,6` sum=`4+1+2-10+6 = 3` option 4 is correctAnswer |
|