Saved Bookmarks
| 1. |
The period of the function `|sin^3(x/2)|+|cos^5(x/5)|`isA. `2pi`B. `10pi`C. `8pi`D. `5pi` |
|
Answer» Correct Answer - B `f(x)=|"sin"^(3)(x)/(2)|+|"cos"^(5)(x)/(5)|` The period of `sin^(3)x` is `2pi`. So, the period of ` "sin"^(3)(x)/(2) " is " (2pi)/(1//2)=4pi.` So, the period of `|"sin"^(3)(x)/(2)|" is " 2pi.` The period of `cos^(5) x " is " 2pi.` So, the period of ` "cos"^(5)(x)/(5) " is " (2pi)/(((1)/(5)))=10pi.` So, the period of `|"cos"^(5)(x)/(2)| " is " 5pi` So, the period of `|"cos"^(5)(x)/(2)| " is " 5pi` Now, period of `f(x)=LCM " of " {2pi,5pi}=10pi` |
|