Saved Bookmarks
| 1. |
Find the period of the following function (i) `f(x) =|sinx|+|cosx|` (ii) `f(x)=cos(cosx)+cos(sinx)` (iii) `f(x)= (|sinx+cosx|)/(|sinx|+|cosx|)` |
|
Answer» (i) `f(x) =|sinx|+|cosx|` Period of both `|sinx|` and `|cosx|` is `pi`. So, we can consider period of f(x) to be `pi`. But `f((pi)/(2)+x)=|sin((pi)/(2)+x)|+|cos((pi)/(2)+x)|` `=|cosx|+|-sinx|` `=|cosx|+|sinx|` `=f(x)` So, period of f(x) is `Pi//2`. (ii) `f(x)=cos(cosx)+cos(sinx)` Period of `cos(cosx) " is " pi.` Period of `cos(sinx) " is " pi.` So, we can consider period of f(x) to be `pi`. But `f((pi)/(2)+x)=cos(cos((pi)/(2)+x))+cos(sin((pi)/(2)+x))` `=cos(-sinx)+cos(cosx)` `=cos(sinx)+cos(cosx)` So, period of f(x) is `pi//2` (iii) `f(x)= (|sinx+cosx|)/(|sinx|+|cosx|)` `|sinx +cosx|=sqrt(2)|sin(x+(pi)/(4))|`, which is has period `pi`. Period of `|sinx|+|cosx| " is " pi//2`. Therefore, period of f(x) is L.C.M. of `(pi,pi//2)=pi` |
|