Saved Bookmarks
| 1. |
A real-valued functin `f(x)` satisfies the functional equation `f(x-y)=f(x)f(y)-f(a-x)f(a+y),` where a given constant and `f(0)=1.` Then prove that `f(x)` is symmetrical about point (a, 0). |
|
Answer» We have `f(x-y)=f(x)f(y)-f(a-x)f(a+y)` Putting `x=a " and " y=x-a,` we get `f(a-(x-a))=f(a)f(x-a)-f(0)f(x) " (1)" ` Putting `x=0,y=0, ` we get `f(0)=f(0)(f(0))-f(a) f(a)` or ` f(0)=(f(0))^(2)-(f(a))^(2)` or `1=(1)^(2)-(f(a))^(2)` or `f(a)=0` ` :. f(2a-x)= -f(x) " (from (1))" ` Replacing x by `a-x,` we get `f(2a-(a-x))= -f(a-x)` or `f(a+x)= -f(a-x)` Therefore, `f(x)` is symmetrical about point (a, 0). |
|