Saved Bookmarks
| 1. |
Solve the differential equation`sinxdy/dx+3y=cosx` |
|
Answer» `dy/dx+(3y)/sinx=cosx/sinx` `P(x)=3/sinx` `Q(x)=cotx` `IF=e^(intp(x)dx)=e^(3/sinx) dx=e^(3intcosecx)`dx `=e^(ln(1+cosecx+cotx)^(-3)` `y*IF=intIF*Q(x) dx` `=int-dt/t^3` `=-(t^(-4+1)/(-4+1))` `y*if=1/(3(cosecx+cotx)^3` `y=1/((cosecx+cotx)^3^3(cosecx+cotx)^3)` `y=1/3`. |
|