1.

Solve the differential equation`sinxdy/dx+3y=cosx`

Answer» `dy/dx+(3y)/sinx=cosx/sinx`
`P(x)=3/sinx`
`Q(x)=cotx`
`IF=e^(intp(x)dx)=e^(3/sinx) dx=e^(3intcosecx)`dx
`=e^(ln(1+cosecx+cotx)^(-3)`
`y*IF=intIF*Q(x) dx`
`=int-dt/t^3`
`=-(t^(-4+1)/(-4+1))`
`y*if=1/(3(cosecx+cotx)^3`
`y=1/((cosecx+cotx)^3^3(cosecx+cotx)^3)`
`y=1/3`.


Discussion

No Comment Found