1.

`int 1/(x( 6 ( log x)^2 + 7 log x + 2) dx`

Answer» `logx=t`
`1/xdx=dt`
`intdt/(6t^2+7t+2)=1/6intdt/(t^2+7/6t+2/6)`
`1/6intdt/((t+7/12)^2-(1/12)^2)`
`ln((t+1/2)/(t+2/3))+c`
`ln((2t+1)/(3t+2))+c`
`=log((2logx+1)/(3logx+2)*3/2)+c`
`=log((6logx+3)/(6logx+4))+c`.


Discussion

No Comment Found