Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

301.

Which of the following statements is not correct for the R by aRb if and only if b lives within one kilometer from a (a) R is reflexive (b) R is symmetric (c) R is not anti-symmetric (d) None of the above

Answer» aRb
aRa
`(a,a) in R`
R is reflexive
`(a,b) in R`
`(b,a) in R`
R is symmetric.
`a!=b`
Option C is correct.
302.

If `a_(0)=x,a_(n+1)=f(a_(n)), " where " n=0,1,2, …,` then answer the following questions. If `f:R to R ` is given by `f(x)=3+4x and a_(n)=A+Bx,` then which of the following is not true?A. `A+B+1=2^(2n+1)`B. `|A-B|=1`C. `underset (h to oo)(lim)(A)/(B)= -1`D. None of these

Answer» Correct Answer - C
Given `a_(n+1)=f(a_(n))`
Now, `a_(1)=f(a_(0))=f(x)`
`or a_(2)=f(a_(1))=f(f(a_(0)))=fof(x)`
`or a_(n)=(fofofof …f(x))/("n times")`
Since `a_(1)=g(x)=3+4x,` we have
`a_(2)=f{g(x)}=g(3+4x)=3+4(3+4x)=(4^(2)-1)+4^(2)x`
`a_(3)=g{g^(2)(x)}=g(15+4^(2)x)=3+4(15+4^(2)x)=63+4^(3)x`
`=(4^(3)-1)+4^(3)x`
Similarly, we get `a_(n)=(4^(n)-1)+4^(n)x`
`or A=4^(n)-1 and B=4^(n)`
`or A+B+1=2^(2n+1),|A-B|=1, and `
`underset(n to oo)(lim)(4^(n)-1)/(4^(n))=underset(n to oo)(lim)(1-(1)/(4^(n)))=1`
303.

If `(f(x))^(2)xxf((1-x)/(1+x))=64x AAx in D_(f),` then The value of `f(9//7)` isA. `8(7//9)^(2//3)`B. `4(9//7)^(1//3)`C. `-8(9//7)^(2//3)`D. None of these

Answer» Correct Answer - C
`(f(x))^(2)f((1-x)/(1+x))=64x " (1)" `
Putting `(1-x)/(1+x)=y or x=(1-y)/(1+y),` We get
`{f((1-y)/(1+y))}^(2)*f(y)=64((1-y)/(1+y))`
` or f(x)*{f((1-x)/(1+x))}^(2)=64((1-x)/(1+x)) " (2)" `
Squaring (1) and dividing by (2),
`(f(x)^(4){f((1-x)/(1+x))}^(2))/(f(x){f((1-x)/(1+x))}^(2))=((64x)^(2))/(64((1-x)/(1+x)))`
`or {f(x)}^(3)=64x^(2)((1+x)/(1-x))`
` or f(x)=4x^(2//3)((1+x)/(1-x))^(1//3)`
` :. f(9//7)= -4(9//7)^(2//3)(2)`
304.

`f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx` Consider the functions `h_(1)(x)=f(|g(x)|) and h_(2)(x)=|f(g(x))|.` Which of the following is not true about `h_(1)(x)`?A. It is a periodic function with period `pi`.B. The range is [0, 1].C. The domain is R.D. None of these

Answer» Correct Answer - D
`|g(x)|=|sinx|, x in R`
`f(|g(x)|)={(|sinx|-1",",-1 le |sinx| lt 0),((|sinx|)^(2)",", 0le (|sinx|) le 1):}=sin^(2)x,x in R`
`f(g(x))={(sinx-1",",-1 le sinx lt 0),(sin^(2)x",", 0le sinx le 1):}`
`={(sinx-1",",(2n-1) pi lt x lt 2n pi),(sin^(2)x",", 2n pi le x le (2n+1)pi):},n in Z.`
or `|f(g(x))|={(sinx-1",",(2n-1) pi lt x lt 2n pi),(sin^(2)x",", 2n pi le x le (2n+1)pi):},n in Z.`
Clearly, `h_(1)(x)=f(|g(x)|)=sin^(2)x` has period `pi`, range [0, 1], and domain R`.
305.

`f(x)={(x-1",",-1 le x le 0),(x^(2)",",0le x le 1):} and g(x)=sinx` Consider the functions `h_(1)(x)=f(|g(x)|) and h_(2)(x)=|f(g(x))|.` If for `h_(1)(x) and h_(2)(x)` are identical functions, then which of the following is not true?A. Domain of `h_(1)(x) and h_(2)(x)" is " x in [2n pi,(2n+1)pi],n in Z.`B. Range of `h_(1)(x) and h_(2)(x)" is " [0,1]`C. Period of `h_(1)(x) and h_(2)(x) " is " pi`D. None of these

Answer» Correct Answer - C
`|g(x)|=|sinx|, x in R`
`f(|g(x)|)={(|sinx|-1",",-1 le |sinx| lt 0),((|sinx|)^(2)",", 0le (|sinx|) le 1):}=sin^(2)x,x in R`
`f(g(x))={(sinx-1",",-1 le sinx lt 0),(sin^(2)x",", 0le sinx le 1):}`
`={(sinx-1",",(2n-1) pi lt x lt 2n pi),(sin^(2)x",", 2n pi le x le (2n+1)pi):},n in Z.`
or `|f(g(x))|={(sinx-1",",(2n-1) pi lt x lt 2n pi),(sin^(2)x",", 2n pi le x le (2n+1)pi):},n in Z.`
For `h_(1)(x)-=h_(2)(x)=sin^(2)x, x in [2n pi,(2n+1) pi], n in Z,` and has range [0, 1] for the common domain.
Also, the period is `2pi` (from the graph).
306.

If `a_(0)=x,a_(n+1)=f(a_(n)), " where " n=0,1,2, …,` then answer the following questions. If `f(x)=(1)/(1-x),` then which of the following is not true?A. `a_(n)=(1)/(1-x) " if " n=3k+1`B. `a_(n)=(x-1)/(x) " if " n=3k+2`C. `a_(n)=x " if " n=3k`D. None of these

Answer» Correct Answer - D
Given `a_(n+1)=f(a_(n))`
Now, `a_(1)=f(a_(0))=f(x)`
`or a_(2)=f(a_(1))=f(f(a_(0)))=fof(x)`
`or a_(n)=(fofofof …f(x))/("n times")`
Now, if `f(x)=(1)/(1-x), fof(x)=(1)/(1-(1)/(1-x))=(x-1)/(x)`
or `fofof(x)=((1)/(1-x)-1)/((1)/(1-x))=x`
`or a_(n)=(fofof ... of(x))/("n times")=(1)/(1-x) " if " n=3k+1`
`=(x-1)/(x) " if " n=3k+2`
`=x " if " n=3k`
307.

If `a_0 = x,a_(n+1)= f(a_n)`, where `n = 0, 1, 2, ...,` then answer thefollowing questions. If `f (x) = msqrt(a-x^m),x lt0,m leq 2,m in N`,thenA. `a_(n)=x, n=2k+1,` where k is an integerB. `a_(n)=f(x) " if " n=2k,` where k is an integerC. The inverse of `a_(n)` exists for any value of n and mD. None of these

Answer» Correct Answer - D
Given `a_(n+1)=f(a_(n))`
Now, `a_(1)=f(a_(0))=f(x)`
`or a_(2)=f(a_(1))=f(f(a_(0)))=fof(x)`
`or a_(n)=(fofofof …f(x))/("n times")`
`a_(1)=f(x)=(a-x^(m))^(1//m)`
`or a_(2)=f(f(x))=[a-{(a-x^(m))^(1//m)}^(m)]^(1//m)=x`
`or a_(3)=f(f(f(x)))=f(x)`
Obviously, the inverse does not exist when m is even and n is odd.
308.

If `x in [0,5]`, then what is the probability that `x^2 - 3x + 2 > 0`

Answer» `x^2-3x+2 ge 0`
`=>(x-1)(x-2) ge 0`
It means, `x ge 2` and `x le 1`
If we draw it on the number line, from points `0` to `5`, we can see that `4/5` of the part is covered.So, the required probability is `4/5`.
Please refer to video to see the number line.
309.

Consider a triangle OAB on the xy- plane in which O is taken as origin of reference and position vector of A and B are `vec a`and`vec b` respectively. A line AC parallel to OB is drawn a from A. D is the mid point of OA. Now a line DC meets AB at M. Area of `DeltaABC` is 2 times the area of `DeltaOAB` On the basis of above information, answer the following questions1. Position vector of point C is2. Position vector of point M is

Answer» `vec(OM)=vec(OA)+vec(AM)`
`vec(OM)=veca+t(vecb-veca)`
`vec(OM)=vec(OD)+vec(DM)`
`vec(OM)=veca/2+S(veca/2+2vecb)`
`veca+tvecb-tveca=veca/2+sveca/2+2svecb`
`1-t=(1+5)/2,t=25`
`1=5s`
`s=1/5`
`vec(OM)=veca+2/5(vecb-veca)`
`=veca+2/5vecb-2/5veca`
`=(3veca+2vecb)/5`
310.

If `f(x)=sinx+cosa x`is a periodic function, show that `a`is a rational number

Answer» Period of `sinx=2 pi =(2pi)/(I)` and period of `cos ax=(2 pi)/(|a|)`
` :. " Period of " sinx +cos ax= LCM " of " (2pi)/(I) " and " (2pi)/(|a|)`
`=(LCM" of " 2pi " and " 2pi)/(HCF " of " 1 and a)`
`=(2pi)/(lambda)`
where ` lambda` is the HCF of 1 and `a,(1)/(lambda) " and " (|a|)/(lambda)` should both be integers.
Suppose `(1)/(lambda)=p " and "(|a|)/(lambda)=q.`
Then, `((|a|)/(lambda))/((1)/(lambda)) =(q)/(p), " where " p, q in Z`
i.e., `|a|=(p)/(q)`
Hence, a is the rational number.
311.

If `5cosx+12cosy=13`, then the maximum value of `5sinx+12siny` is (A) `12` (B) `sqrt(120)` (C) `sqrt(20)` (D) 13

Answer» `(5cosx+12cosy)=13`
`(5cosx+12cosy)^2=13^2=169`
`25cos^2x+120cosxcosy+144cos^2y=169-(1)`
`5sinx+12siny=A`
`25sin^2x+120sinxsiny+144sin^y=A^2`
adding eqution 1 and 2
25+144+120(cosxcosy+sinxsiny)
`=A^2+169`
`120(cosxcosy+sinxsiny)=A^2`
`120cos(x-y)=A^2`
`A^2` is a max when`cos(x-y)=1`
`A_(max)^2=120`
`A_(max)=sqrt120`
312.

The area of the region bounded by the curves `y=sqrt[[1+sinx]/cosx]` and `y=sqrt[[1-sinx]/cosx]` bounded by the lines x=0 and `x=pi/4` is

Answer» `sinx=(2tanx/2)/(1+tan^2x/2)`
`cosx=(1-tan^2x/2)/(1+tan^2x/2)`
`y=sqrt((1+((2tanx/2)/(1+tan^2x/2))/((1-tan^2x/2)/(1+tan^2x/2)))`
`y=(1+tanx/2)/(sqrt(1-tan^2x/2)`
`y=(1-tanx/2)/sqrt(1-tan^2x)`
`I=int_0^(pi/4)sqrt((1+sinx)/(cosx))-sqrt((1-sinx)/(cosx))dx`
`I=int_0^(pi/4)(2tan(x/2))/sqrt(1-tan^2x/2)dx`
`I=int_0^(sqrt2-1)(2t2dt)/(sqrt(1-t^2)(1+t^2))`
`I=int_0^(sqrt2-1)(4dt)/((1+t^2)sqrt(1-t^2))`
option b is corect.
313.

If `a`, `b`, `c` `p`, `q`, `r` six complex numbers such that `p/a+q/b+r/c=1+i` and `a/p+b/q+c/r=0` then value of `p^2/a^2+q^2/b^2+r^2/c^2=`

Answer» `p^2/a^2+q^2/b^2+r^2/c^2 = (p/a+q/b+r/c)^2-2((pq)/(ab)+(qr)/(bc)+(rp)/(ca))`
`=(1+i)^2-2((pqc)/(abc)+(qra)/(abc)+(rpb)/(cab))`
`=(1+i)^2-2/(abc)*(pqr)(c/r+a/p+b/q)`
As, `(a/p+b/q+c/r) = 0`, our equation becomes,
`p^2/a^2+q^2/b^2+r^2/c^2 = (1+i)^2`
`=1+i^2+2i = 1-1+2i = 2i`
`:. p^2/a^2+q^2/b^2+r^2/c^2 = 2i`
314.

If the domain of `y=f(x)i s[-3,2],`then find the domain of `g(x)=f(|[x]|),w h e r[]`denotes the greatest integer function.

Answer» Correct Answer - [-2, 3)
Here, `f(x)` is defined for `x in [-3,2].`
For `g(x)=f(|[x]|)` to be defined, we must have
`-3 le |[x]| le 2`
or `0le |[x]| le 2 " " ["As" |x| ge 0 " for all " x]`
or ` -2 le [x] le 2 " " ["As " |x| le a implies-a le x le a]`
or `-2 le x lt 3 " " ` [By the definition of greatest integral function]
Hence, domain of `g(x)` is `[-2,3)`.
315.

Are f and g both necessarily onto, if `gof`is onto?

Answer» Let `f: A->B` and `g:B->C` are two functions such that
`gof: A->C`
We are given `gof` is onto.
Let `A = {a_1,a_2,a_3}`
Let `C = {c_1,c_2,c_3}`
As `gof` is onto there will be mapping between each elements of set `C` with every element of set `A`.
Now, Let `B = {b_1,b_2,b_3,b_4}`
As set `B` contains more elements than `A` and `C` so it will not have mapping of its all elements with elements of set `A` and set `C`.
That means it is not neccesary that `f` and `g` are also onto function.
316.

Let N be the set of natural numbers and f : N->N be a function given by f(x)=x+1 for `x in N`.Which one of the following is correct?a. f is one-one and ontob. f is one-one but not ontoc. f is only ontod. f is neither one-one nor onto

Answer» A function, `f(x)` is a one-one function if`f(a) = f(b)`,
then, `a =b`
Here, `f(x) = x+1`
`f(a) = a+1`
`f(2) = b+1`
If, `f(a) = f(2)`
Then, `a+1 = b+1 => a = b`
So, `f(x)` is a one-one function.
For a function `f(x)` to be an onto function, it should cover all elements of `x`.
Here, as `x in N`. So, `x = (1,2,3,4...) `.
`f(x) in N`. `f(x) = (2,3,4,5...)`.
As `f(x)` does not have value `1` that is present in `x`, so, `f(x)` is not an onto function.
So, option `B` is the correct answer.
317.

If `f(x)=log((1+x)/(1-x))`, `f(2x/(1+x^2))=2f(x)`

Answer» `f(y)=log((1+y)/(1-y))`
`y=(2x)/(1+x^2)`
`f((2x)/(1+x^2))=log((1+((2x)/(1+x^2)))/(1-(2x)/(1+x^2)))`
`=log((1+x^2+2x)/(1+x^2-2x))`
`=log((1+x^2)/(1-x^2))`
`=2log((1+x)/(1-x))`.
318.

Let `f(x) =(alphax)/(x+1)` Then the value of `alpha` for which `f(f(x) = x` is

Answer» Correct Answer - -1
`f(x)=(alpha x)/(x+1), x ne -1`
Now `f(f(x))=x`
`implies(alpha((alpha x)/(x+1)))/((alpha x)/(x+1)+1)=x`
`implies(alpha^(2)x)/((alpha +1)x+1)=x`
`implies (alpha+1)x^(2)+(1-alpha^(2))x=0 " ...(1)" `
Now this is true for all real x.
`implies alpha +1=0 " and " 1-alpha^(2)=0`
`implies alpha = -1 ` (common value)
319.

Let `f: A to B` and `g: B to C` be two functions. Then; if gof is onto then g is onto; if gof is one one then f is one-one and if gof is onto and g is one one then f is onto and if gof is one one and f is onto then g is one one.

Answer» Let `z in D,` then there is some `y in C` such that `g(y)=z`
` :.` Now if `y notin B`, then there is no x for which `f(x)=y`
` :. gof` is not onto.
320.

The number of integer value(s) of n when `3^512`-1 is divided by `2^n` is/are

Answer» `3^512 - 1 = (3^256)^2 - 1`
`= (3^256 - 1)(3^256 + 1)`
`= ((3^128)^2 - 1^2)(3^256 + 1)`
`= (3^128 -1)(3^128 +1)(3^256 +1)`
`3^512 - 1 = (3^64 - 1)(3^64 + 1)(3^128 + 1)(3^256+1)`
`= (3^32 - 1)(3^32+1)`
`= (3^16 - 1)(3^16+1)`
`= (3^8 - 1)(3^8+1)`
`= (3^4-1)(3^4+1)`
`= (3^2-1)(3^2+1)`
`3^512 - 1= (3-1)(3+1)3^2`
`3^512 - 1= 2(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)(3^64+1)(3^128+1)(3^256+1)`
`3^256 = (2+1)^256`
`= .^256C_0(2)^256 (1)^0 + .^256C_1(2)^256(1)^1.......+1`
`= 2(even) + 2(odd)`
`= = 20^11`
option c is correct
answer
321.

Let`f"":""N rarr Y`be a function defined as `f""(x)""=""4x""+""3`, where `Y""=""{y in N"":""y""=""4x""+""3`for some `x in N}`. Show that f is invertibleand its inverse is(1) `g(y)=(3y+4)/3`(2) `g(y)=4+(y+3)/4`(3) `g(y)=(y+3)/4`(4) `g(y)=(y-3)/4`

Answer» `F(x)=4x+3`
`F(x)-3=4x`
`x=(F(x)-3)/4`
`F^-1(x)=(x-3)/4`
`g(y)/N=(y-3)/4`
`y=4x+3`
`g(y)=(y-3)/4`is the answer
322.

Let `S_n` denote the sum of n terms of an AP whose first term is a. If common difference d is given by `d=Sn-kS_(n-1)+S_(n-2)` , then k is :

Answer» `d = a_n - a_(n-1)`
`a_n = s_n - s_(n-1)`
`= n/2 [2a + (n-1)d] - (n-1)/2[2a + (n-2)d]`
`= (2an + n(n-1)d - (n-1)[2a+ (n-1)d])/2`
`= (2a+ (n-1)d-d +nd)/2`
`= a + nd-d`
`= a + (n-1)d`
`k=2`
so, option B is correct
answer
323.

If `f(x)=log[(1+x)/(1-x)],`then prove that `f[(2x)/(1+x^2)]=2f(x)dot`

Answer» `f(x)=log[(1+x)/(1-x)]`
or `f((2x)/(1+x^(2)))=log[(1+(2x)/(1+x^(2)))/(1-(2x)/(1+x^(2)))]=log[(x^(2)+1+2x)/(x^(2)+1-2x)]`
`=log[(1+x)/(1-x)]^(2)=2 log [(1+x)/(1-x)]=2f(x)`
324.

Let `f(x) = 1 + |x|,x < -1 [x], x >= -1, where [*]` denotes the greatest integer function.Then `f { f (- 2.3)}` is equal to

Answer» Correct Answer - 3
`f(x)={(1+|x|",",x lt -1),([x]",",x ge -1):}`
`f(-2.3)=1+|-2.3|=1+2.3=3.3`
Now, `f(f(-2.3))=f(3.3)=[3.3]=3`
325.

If `f(x) = -1 +|x-1|, -1 le x le 3 " and " g(x)=2-|x+1|, -2 le x le 2,` then find `fog(x) " and " gof(x).`

Answer» `f(g(x))= -1+|g(x)-1|,-1le g(x) le 3,-2 le x le 2`
`= -1 +|2-|x+1|-1|,-1le2-|x+1|le3, -2 le x le 2`
`= -1+|1-|x+1||,-1 le2-|x+1| le3,-2 le x le 2`
Now `-1 le 2-|x+1|le 3`
`implies -3 le -|x+1| le 1`
`implies -1 le |x+1|le3`
`implies 0le |x+1|le 3`
` implies -3 le x+1 le 3`
`implies -4 le x le 2 `
Also ` -2 le x le 2`
` :. fog(x) = -1+|1-|x+1||,-2 le x le2`
`g(f(x))=2-|f(x)+1|,-2le f(x) le 2, -1 le x le 3`
`=2-| -1+|x-1|+1|,-2 le-1+|x-1| le 2, -1 le x le 3`
`= 2-|x-1|,-2 le -1 +|x-1| le 2, -1 le x le 3 `
Now `-2 le -1+|x-1| le 2`
`implies -1 le |x-1| le 3`
`implies -3 le x-1 le 3`
`implies -2 le x le 4`
Also `-1 le x le 3`
` :. g(f(x))=2 - |x-1|,-1 le x le 3`
326.

`f(x)={x+1, x

Answer» `f(g(x))={(g(x)+1",", g(x) lt0),({g(x)}^(2)",",g(x) ge0):}`
`f(x)={(x^(3)+1",",x^(3) lt0", " x lt1),(2x-1+1",",2x-1 lt 0", "x ge1),((x^(3))^(2)",",x^(3) ge0", " x lt1),((2x-1)^(2)",",2x-1 ge 0", "x ge1):}`
`={(x^(3)+1",", x lt0),(x^(6)",",0le x lt1),((2x-1)^(2)",", x ge1):}`
Clearly, domain of function is R.
For `x lt 0, x^(3) +1 in (-oo,1).`
For `0le x lt 1, x^(6) in [0,1).`
For ` x ge 1, (2x-1)^(2) in [1, oo).`
Hence, the range is R.
327.

The function `f(x)` is defined in `[0,1]`. Find the domain of `f(tanx).`

Answer» Here, `f(x)` is defined in `[0,1].`
So, `x in [0,1],` i.e., the only values of x that we can subsitute lies in `[0,1].`
For `f(tanx)` to be defined, we must have
`0 le tan x le 1 " [As x is replaced by tan x]" `
i.e., `n pi le x le n pi +(pi)/(4), n in Z " [in general]" `
Thus, the domain of `f(tanx)` is
`underset(n in Z)(cup)[n pi,n pi+(pi)/(4)]`
328.

Suppose that `g(x)=1+sqrt(x) " and " f(g(x))=3+2sqrt(x)+x.` Then find the function `f(x)`.

Answer» `g(x)=1+sqrt(x) " and " f(g(x))=3+2sqrt(x)+x " " `(1)
` :. f(1+sqrt(x))=3+2sqrt(x)+x`
Put `1+sqrt(x)=y " or " x=(x-y)^(2).` Then,
`f(y)=3+2(y-1)+(y-1)^(2)=2+y^(2).`
` :. f(x)=2+x^(2)`
329.

Which of the following functions from Z to itself are bijections? aA. `f(x)=x^(3)`B. `f(x)=x+2`C. `f(x)=2x+1`D. `f(x)=x^(2) +1`

Answer» Correct Answer - B
Here, `f(x) =x +2impliesf(x_(1))=f(x_(2))`
`x_(1)+2=x_(2)+2implies x_(1)=x_(2)`
Let `" " y=x+2`
`x=y-2 in Z, AA y in x`
Hence, f(x) is one-one and onto.
330.

If `f:R to R` be defined by `f(x)=3x^(2)-5` and `g: R to R ` by `g(x)= (x)/(x^(2)+1).` Then, gof isA. `(3x^(2)-5)/(9x^(4)-30x^(2)+26)`B. `(3x^(2)-5)/(9x^(4)-6x^(2)+26)`C. `(3x^(2))/(x^(4)+2x^(2)-4)`D. `(3x^(2))/(9x^(4)+30x^(2)-2)`

Answer» Correct Answer - A
Given that , `f(x) = 3x^(2)-5` and `g(x) = (x)/(x^(2)+1)`
`gof= g{f(x)}=g(3x^(2)-5) `
`=(3x^(2)-5)/((3x^(2)-5)^(2)+1)=(3x^(2)-5)/(9x^(4)-30x^(2)+25 +1)`
`=(3x^(2)-5)/(9x^(4)-30x^(2)+26)`
331.

If `f: RvecR`is given by `f(x)=(x^2-4)/(x^2+1)`, identify the type of function.

Answer» Correct Answer - many-one, into
`f(x)=f(-x), " So, "f` is many-one.
Also, `f(x)=1-(5)/(x^(2)+1) in [-4,1) " So, "f` is into.
332.

If`f: NvecZf(n)={(n-1)/2,w h e nni sod d-n/2,i d e n t ifyt h ew h e nni se v e n`

Answer» Correct Answer - bijective
When n is even, let
`f(2m_(1))=f(2m_(2))`
or `-(2m_(1))/(2)=-(2m_(2))/(2)`
or `m_(1)=m_(2)`
When n is odd, let
`f(2m_(1)+1)=f(2m_(2)+1)`

or `(2m_(1)+1-1)/(2)=(2m_(2)+1-1)/(2) " or "m_(1)=m_(2)`
Therefore, `f(x)` is one-one.
Also, when n is even, `-(n)/(2)=-(2m)/(2)= -m.`
When n is odd, `(n-1)/(2)=(2m+1-1)/(2)=m.`
Hence, the range of the function is Z.
Therefore, function is onto.
333.

Find the range of `tan^(-1)((2x)/(1+x^2))`

Answer» First, we must get the range of
`(2x)/(1+x^(2))=y`
We have `yx^(2)-2x+y=0`
Since x is real, `D ge 0, " i.e., "4-4y^(2) ge 0 " or " -1 le y le 1.` So,
` "tan"^(-1)(y) in [-(pi)/(4),(pi)/(4)]` (As `tan x` is an increasing function)
334.

Find the range of `f(x)=|sinx|+|cosx|, x in R`.

Answer» `f(x)=|sinx|+|cosx|, x in R`.
Clearly, `f(x) gt 0`.
Also, `f^(2)(x)=sin^(2)x+cos^(2)x+|2 sinx cos x|=1+|sin2x|`
Now, `0 le |sin zx|le1`
` :. 1 le 1 +|sin zx| le 2`
` :. 1 le f^(2)(x) le 2`
or ` 1 le f(x) le sqrt(2)`
335.

Find the range of `f(x)=sin^2x-sinx+1.`

Answer» `f(x)=sin^(2)x-sinx +1=(sinx - (1)/(2))^(2)+(3)/(4)`
Now, ` -1 le sinx le 1 " or " -(3)/(2) le sinx-(1)/(2) le (1)/(2)`
or ` o le (sinx -(1)/(2))^(2) le (9)/(4) " or " (3)/(4) le (sinx -(1)/(2))^(2) l+ (3)/(4) le 3`
Hence, the range is `[(3)/(4),3]`.
336.

The equation of the curve passing through the point `(1,pi/4)` and having a slope of tangent at any point (x,y) as `y/x - cos^2(y/x)` is

Answer» Here, slope is given as `y/x-cos^2(y/x)`
`:. dy/dx = y/x-cos^2(y/x)->(1)`
Let, `y/x = v => y = vx => dy/dx = v+x(dv)/dx`
so, (1) becomes,
`=>v+x(dv)/dx = v- cos^2v`
`=>(dv)/cos^2v = -dx/x`
Integrating both sides,
`int (dv)/cos^2v = - int dx/x`
`=>int sec^2v (dv) = - int dx/x`
`=>tanv = -ln x+c`
`=>tan(y/x) = -ln x+c`
As, the curve is passing through `(1,pi/4)`, it will satisfy the above equation.
`:. tan (pi/4) = -ln (1) +c`
`=> c = 1`
So, the rfequired equation becomes,
`tan(y/x) = -ln x+1`
`=> tan(y/x) - 1= -ln x`
`=> x = e^(1-tan(y/x))`, which is the required equation.
337.

Find the range of `f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)xdot`

Answer» Clearly, the domain of the function is `[-1,1].` Also
`tan^(-1)x in [-(pi)/(4),(pi)/(4)] " for " x in [-1,1]`
Now, `sin^(-1)x+cos^(-1)x =(pi)/(2)" for " x in [-1,1]`
Thus, `f(x)=tan^(-1)x+(pi)/(2), " where " x in [-1,1]`
Hence, the range is
`[-(pi)/(4)+(pi)/(2),(pi)/(4)+(pi)/(2)]-=[(pi)/(4),(3pi)/(4)]`
338.

Find the matrix A satisfying the matrix equation: `[[2,1],[3,2]]` A`[[-3,2],[5,-3]]`=`[[1,0],[0,1]]`

Answer» `[[2,1],[3,2]]A[[-3,2],[5,-3]] = [[1,0],[0,1]]`
Let `B = [[2,1],[3,2]]`
`C = [[-3,2],[5,-3]]`
Then, `BAC = I`
`=>B^-1BAC^-1C = B^-1C^-1I`
`=>A = B^-1C^-1 = (CB)^-1`
Now, `CB = [[-3,2],[5,-3]][[2,1],[3,2]] = [[0,1],[1,-1]]`
Now, `(CB)^-1 = (adj(CB))/|CB|`
`=>adj(CB) = [[-1,-1],[-1,0]]`
`=>|CB| = 0-1 = -1`
`:. (CB)^-1 = [[1,1],[1,0]]`
`:. A = (CB)^-1 = [[1,1],[1,0]]`
339.

Suppose that `f(x)` is a function of the form `f(x)=(ax^(8)+bx^(6)+cx^(4)+dx^(2)+15x+1)/(x), (x ne 0)." If " f(5)=2`, then the value of `f(-5)` is _________.

Answer» Correct Answer - 28
`f(x)=(ax^(8)+bx^(6)+cx^(4)+dx^(2)+15x+1)/(x)`
`=underset("odd function")(underbrace(ax^(7)+bx^(5)+cx^(3)+dx+(1)/(x)+15))`
Now, `f(x)+f(-x)=30`
`or f(-5)=30-f(5)=28`
340.

If a and b are positive integers with no common factor,show that `[a/b]+[(2a)/b]+[(3a)/b]. . . . . [((b-1)a)/b]=((a-1)(b-1))/2` when [.] shows the greatest integer function

Answer» Let `S = [a/b]+[(2a)/b]+[(3a)/b]+...+[((b-1)a)/b]->(1)`
We can write it from end as,
`S = [((b-1)a)/b]+ [((b-2)a)/b]+...[(2a)/b]+[a/b]->(2)`
Adding (1) and (2),
`2S = ([a/b]+[((b-1)a)/b])+([(2a)/b]+[((b-2)a)/b])+...+([((b-1)a)/b+[a/b]])`
Now, `[a/b]+[((b-1)a)/b] = [a/b]+[a-a/b] = a-1`
Similarly, `[(2a)/b]+[((b-2)a)/b] = [(2a)/b]+[a-(2a)/b] = a-1`
So, each term will be equal to `a-1.`
As, there are `b-1` terms,
`:. 2S = (a-1)(b-1)`
`=>S = ((a-1)(b-1))/2.`
341.

Find the domain of the following functions (a) `f(x)=(1)/(sqrt(x-2)) " (b) " f(x)=(1)/(x^(3)-x)` (c ) `f(x)= root(3)(x^(2)-2)`

Answer» Correct Answer - (a) `(2,oo) " (b) " R-{-1,0,1} " (c ) "R`
(a) `f(x)=(1)/(sqrt(x-2))` is defined if `x-2 gt 0 " or " x gt 2.`
Therefore, domain is `(2,oo)`.
(b) `f(x)=(1)/(x^(3)-x)` is not defined if `x^(3)-x=0 " or " x(x-1)(x+1)=0" or " x=-1,0,1.`
Therefore, domain is `R-{-1,0,1}.`
(c ) `f(x)=root(3)(x^(2)-2)`. We know that cube roots are defined for any real value. So, `x^(2)-2` can take any real value.
So, x can take any real value. Therefore, domain is set R.
342.

Find the range of the following functions. (a) `f(x)=5-7x " (b) "f(x)=5-x^(2)` (c ) `f(x)=(x^(2))/(x^(2)+1)`

Answer» Correct Answer - (a) `R " (b) " (-oo,5] " (c ) "[0,1)`
(a) `f(x)=5-7x" or " y=5-7x. "So, "x=(5-y)/(7).`
Clearly, for any real value fo y there exists a real number x. So, range is set R.
(b) `f(x)=5-x^(2)" or "y=5-x^(2). " So "x^(2)=5-y.` Since, `x^(2) ge 0, 5-y ge 0. `
So, `y le 5`. Therefore, range is `(-oo,5]`.
(c ) `f(x)=(x^(2))/(x^(2)+1)=y.`
` :. x^(2)=yx^(2)+yimpliesx^(2)=(y)/(1-y).`
Since `x^(2) ge 0` for all real `x,(y)/(1-y) ge " or " (y)/(y-1) le 0.`
So, `0le y lt 1.`
Therefore, range is `[0,1)`
343.

Find the domain and range of `f(x)=(2-5x)/(3x-4)`.

Answer» Correct Answer - Domain: R - {4/3}, Range: R - {-5/3}
`f(x)=y=(2-5x)/(3x-4)`
`implies 3yx-4y=2-5x`
`impliesx=(4y+2)/(3y+5)`
Hence ` x in R-{4//3} " and " y in R-{-5//3}`
344.

Find the domain of `f(x)=sqrt(sinx)+sqrt(16-x^2)`

Answer» Correct Answer - `[-4,-pi] cup [0,pi]`
`f(x)=sqrt(sinx)+sqrt(16-x^(2))`
or ` sinx ge 0 " and " 16-x^(2) ge 0`
or `2n pi le x le (2n+1)pi " and " -4 le x le 4`
Therefore, domain is `[-4,-pi] cup [0,pi].`
345.

Find the domain and range of `f(x)=sqrt(4-16x^(2))`.

Answer» Correct Answer - Domain: [-1/2, 1/2], Range: [0, 2]
`f(x)=y=sqrt(4-16x^(2))`
We must have `4-16x^(2) ge 0 implies x^(2) le 1//4`
`implies x in [-1//2,1//2]`
Hence domain is `[-1//2,1//2]`
Also, minimum value of function is 0 and maximum value 2 when `16x^(2)=4`
Hence range is `[0,2]`
346.

Let `f: R->R` where, `f(x)=(x^2+4x+7)/(x^2+x+1)` Is `f(x)` one-one?

Answer» `f(x) = (x^(2)+4x+7)/(x^(2)+x+1)=1+(3(x+2))/(x^(2)+x+1)`
Let `f(x_(1))=f(x_(2))`
`implies 1+(3(x_(1)+2))/(x_(1)^(2)+x_(1)+1)=1+(3(x_(2)+2))/(x_(2)^(2)+x_(2)+1)`
`implies x_(1)x_(2)^(2)+x_(1)x_(2)+x_(1)+2x_(2)^(2)+2x_(2)+2`
`=x_(1)^(2)x_(2)+x_(1)x_(2)+x_(2)+2x_(1)^(2)+2x_(1)+2`
`implies (x_(1)-x_(2))(2x_(1)+2x_(2)+x_(1)x_(2)+1)=0`
Let us consider `2x_(1)+2x_(2)+x_(1)x_(2)+1=0`
`implies x_(2)=(1+2x_(1))/(2+x_(1))`
This relation is satisfied by infinite number of pairs `(x_(1), x_(2))," where " x_(1) ne x_(2), e.g., (0,-1//2),(1,-1) ` etc.
Hence f(x) is many-one.
347.

Find the range of `f(x)sqrt(x-1)+sqrt(5-1)`

Answer» Correct Answer - `[2,2sqrt(2)]`
Let `y=sqrt(x-1)=sqrt(5-x)`
or `y^(2)=x-1+5-x+2 sqrt((x-1)(5-x))`
or `y^(2)=4+2 sqrt(-x^(2)-5+6x)`
or `y^(2)=4+2 sqrt(4-(x-3)^(2))`
then `y^(2)` has minimum value 4 [when `4-(x-3)^(2)=0`] and maximum value 8 when `x=3`.
Therefore, `y in [2,2sqrt(2)]`.
348.

Find the domain and range of `f(x)=sqrt(3-2x-x^2)`

Answer» Correct Answer - Domain: [-3, 1], Range: [0, 2]
`f(x)=sqrt(3-2x-x^(2))` is defined if
`3-2x-x^(2) ge 0`
or `x^(2)+2x-3 le 0`
or `(x-1)(x+3) le 0`
or ` x in [-3,1]`
Also, `f(x)=sqrt(4-(x+1)^(2))` which has maximum value when
`x+1=0.`
Hence, the range is `[0,2].`
349.

Evaluate `|[x,y,x+y],[y,x+y,x],[x+y,x,y]|`

Answer» `C_1->C_1+C_2`
`|[2(x+y),y,x+y],[2(x+y),x+y,x],[2(x+y),x,y]|`
`R_1->R_1-R_3,R_2->r_2-R_3`
`2(x+y)|[0,y-x,x],[0,y,x-y],[1,x,y]|`
`2(x+y)((y-x)(x-y)-xy)`
`2(x+y)(xy-x^2-y^2+xy-xy)`
`2(x+y)(xy-x^2-y^2)`.
350.

Find the value of p for which curves `x^2=9p(9-y)` and `x^2=p(y+1)` cut each other at right angles.

Answer» Equations of the given curves,
`x^2 = 9p(9-y)->(1)`
`x^2 = p(y+1)->(2)`
From (1) and (2),
`9p(9-y) = p(y+1)`
`=>81p-9py = py+p`
`=>10py = 80p=> y =8`
`:. x^2 = (8+1)p = 9p`
`=>x = 3sqrtp`
So, point of intersection of these curve is `(3sqrtp,8)`.
Now, we have to calculate their slopes by differentiating their equations.
For first curve,
Differentiating its equation,
`2x = 9p(-dy/dx)=>dy/dx = -(2x)/(9p)`
At point `(3sqrtp, 8)`, `dy/dx = m_1 = -(2sqrtp)/(3p)`
For second curve,
Differentiating its equation,
`2x = p(dy/dx) =>dy/dx = (2x)/p`
At point `(3sqrtp, 8)`, `dy/dx = m_2 =(6sqrtp)/(p)`
As these two curves are at right angles, multiplication of their slopes should be equal to `-1`.
`:. -(2sqrtp)/(3p)**(6sqrtp)/(p) = -1`
`=>-12 = -3p => p = 4`