1.

The number of integer value(s) of n when `3^512`-1 is divided by `2^n` is/are

Answer» `3^512 - 1 = (3^256)^2 - 1`
`= (3^256 - 1)(3^256 + 1)`
`= ((3^128)^2 - 1^2)(3^256 + 1)`
`= (3^128 -1)(3^128 +1)(3^256 +1)`
`3^512 - 1 = (3^64 - 1)(3^64 + 1)(3^128 + 1)(3^256+1)`
`= (3^32 - 1)(3^32+1)`
`= (3^16 - 1)(3^16+1)`
`= (3^8 - 1)(3^8+1)`
`= (3^4-1)(3^4+1)`
`= (3^2-1)(3^2+1)`
`3^512 - 1= (3-1)(3+1)3^2`
`3^512 - 1= 2(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)(3^64+1)(3^128+1)(3^256+1)`
`3^256 = (2+1)^256`
`= .^256C_0(2)^256 (1)^0 + .^256C_1(2)^256(1)^1.......+1`
`= 2(even) + 2(odd)`
`= = 20^11`
option c is correct
answer


Discussion

No Comment Found