1.

Consider a triangle OAB on the xy- plane in which O is taken as origin of reference and position vector of A and B are `vec a`and`vec b` respectively. A line AC parallel to OB is drawn a from A. D is the mid point of OA. Now a line DC meets AB at M. Area of `DeltaABC` is 2 times the area of `DeltaOAB` On the basis of above information, answer the following questions1. Position vector of point C is2. Position vector of point M is

Answer» `vec(OM)=vec(OA)+vec(AM)`
`vec(OM)=veca+t(vecb-veca)`
`vec(OM)=vec(OD)+vec(DM)`
`vec(OM)=veca/2+S(veca/2+2vecb)`
`veca+tvecb-tveca=veca/2+sveca/2+2svecb`
`1-t=(1+5)/2,t=25`
`1=5s`
`s=1/5`
`vec(OM)=veca+2/5(vecb-veca)`
`=veca+2/5vecb-2/5veca`
`=(3veca+2vecb)/5`


Discussion

No Comment Found