Saved Bookmarks
| 1. |
Consider a triangle OAB on the xy- plane in which O is taken as origin of reference and position vector of A and B are `vec a`and`vec b` respectively. A line AC parallel to OB is drawn a from A. D is the mid point of OA. Now a line DC meets AB at M. Area of `DeltaABC` is 2 times the area of `DeltaOAB` On the basis of above information, answer the following questions1. Position vector of point C is2. Position vector of point M is |
|
Answer» `vec(OM)=vec(OA)+vec(AM)` `vec(OM)=veca+t(vecb-veca)` `vec(OM)=vec(OD)+vec(DM)` `vec(OM)=veca/2+S(veca/2+2vecb)` `veca+tvecb-tveca=veca/2+sveca/2+2svecb` `1-t=(1+5)/2,t=25` `1=5s` `s=1/5` `vec(OM)=veca+2/5(vecb-veca)` `=veca+2/5vecb-2/5veca` `=(3veca+2vecb)/5` |
|