Saved Bookmarks
| 1. |
If `f(x)=sinx+cosa x`is a periodic function, show that `a`is a rational number |
|
Answer» Period of `sinx=2 pi =(2pi)/(I)` and period of `cos ax=(2 pi)/(|a|)` ` :. " Period of " sinx +cos ax= LCM " of " (2pi)/(I) " and " (2pi)/(|a|)` `=(LCM" of " 2pi " and " 2pi)/(HCF " of " 1 and a)` `=(2pi)/(lambda)` where ` lambda` is the HCF of 1 and `a,(1)/(lambda) " and " (|a|)/(lambda)` should both be integers. Suppose `(1)/(lambda)=p " and "(|a|)/(lambda)=q.` Then, `((|a|)/(lambda))/((1)/(lambda)) =(q)/(p), " where " p, q in Z` i.e., `|a|=(p)/(q)` Hence, a is the rational number. |
|