Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

28101.

Put the suitable articles in the following.1. A more the merrier.2. The sugar is bad for your teeth.3. Eggs are sold by an dozen.4. He plays guitar so well.5. I know a French.

Answer»

1. The more the merrier.

2. Sugar is bad for your health.

3. Eggs are sold by the dozen.

4. He plays the guitar so well.

5. I know French.

28102.

Put the suitable articles in the following.1. The Delhi is our nation’s capital.2. He was elected the chairman of the group.3. This is an least of his concerns.4. I prefer to travel by the plane.5. He told me a interesting story.

Answer»

1. Delhi is our nation’s capital.

2. He was elected chairman of the group.

3. This is the least of his concerns.

4. I prefer to travel by plane.

5. He told me an interesting story.

28103.

Put the suitable articles in the following.1. The children like to play.2. Pride has the fall.3. I saw the drama in a auditorium.4. He studies at an university.5. She asked if I would be there in a hour.

Answer»

1. Children like to play.

2. Pride has a fall.

3. I saw the drama in an auditorium.

4. He studies at a university.

5. She asked if I would be there in an hour.

28104.

Put the suitable articles in the following.1. The management arrived for a decision.2. The train went on a tunnel.3. We congratulate you for your success.4. He is walking on the road to Banga lore. 5. The athletes ran up the hurdles.

Answer»

1. The management arrived at a decision.

2. The train went through a tunnel.

3. We congratulate you on your success.

4. He is walking along the road to Bangalore.

5. The athletes ran over the hurdles.

28105.

He is very skillful at _____ animal noises. A) being made B) to make C) made D) making

Answer»

Correct option is D) making

28106.

I expect that I’ll be able to pass my class this year. I expect _____ my class this year. A) to be able to pass B) to be passed C) passing D) having passed

Answer»

Correct option is C) passing

28107.

The mole fraction of solute in some solution is `1//n`. If `50%` of the solute molecules dissociates into two parts and remaining `50%` get dimerized now mole fractions of solvent become `4/5`. Find value of `n`.

Answer» Correct Answer - 6
`i=1.25`
Original mole fraction `=1/n=1/(1+(n-1))=1.25/(1.25+(n-1))=1/5impliesn=6`
28108.

Calculate the weight of `MnO_(2)` required to react with `HCl` having specific gravity `1.2gm//ml`. `4%` by mas necked to produce `1.8L` of `Cl_(2)` at STP by reaction.

Answer» Correct Answer - 8
`MnO_(2)+4HClto MnCl_(2)+Cl_(2)+2H_(2)O`
`100gm` sol contains `4gm HCl`
`100/1.2 ml` sol contains `4 gm HCl`
`nCl_(2)=1.8/22.4=0.0805`
`W_(MnO_(2))=0.0805xx87=8gm`
28109.

Total number of `OH` present on all boron atoms in colemanite `Ca_(2)B_(6)O_(11).5H_(2)O` is

Answer» Correct Answer - 6
In colemanite every boron carry one `OH` groups as in borane.
28110.

He must give us more time ________ we shall not be able to make a good Job of it. A) whether B) otherwise C) consequently D) therefore E) doubtless

Answer»

Correct option is B) otherwise

28111.

A good education ______ will get you a good job. A) work B) degree C) history D) year

Answer»

Correct option is B) degree

28112.

Determine:(a) \( \int_{0}^{\sqrt{3}+2} \int_{0}^{\pi / 3}(2 \cos \theta-3 \sin 3 \theta) d \theta d r \)

Answer»

\(\int \limits _0 ^{\sqrt3 +2} \left[ \int \limits_0^{\frac \pi 3}(2\, cos \, \theta - 3 \, sin \, 3 \, \theta)d\theta\right]dr\)

\(\int \limits_0^{\sqrt3 +2}dr \left[ 2\, sin \, \theta + cos \, 3 \theta \right]_0^{\frac \pi 3}\)

= \(\left[r\right]_0^{\sqrt3 +2} \)  ( 2 sin \(\frac \pi 3\) + cos \(\pi\) - 2 sin 0 - cos 0)

= (\(\sqrt3 \) + 2 -0) (  2 x \(\frac {\sqrt3}{2}\) -1 -1)

= (\(\sqrt 3\) +2) ( \(\sqrt 3\) -2)

= 3-4

= -1

28113.

Most people think they pay too much ______ tax to the Government. A) income B) salary C) wages D) earnings E) money

Answer»

Correct option is A) income

28114.

Money from work, usually monthly, is called ______. A) wages B) salary C) fee D) pay

Answer»

Correct option is B) salary

28115.

What is the money you get, usually weekly or hourly? A) salary B) pay C) wages D) cash

Answer»

Correct option is C) wages

28116.

John receives a ______ from the state to help him pay the university fees. A) wages B) salary C) grantD) check

Answer»

Correct option is C) grant

28117.

I have been trying to learn to play the guitar for so many years, but I ...... yet. The appropriate verb forms to be filled in the blank is (A) did not succeed (B) will not succeed (C) have not succeeded (D) had not succeeded

Answer»

(C) have not succeeded

28118.

Observe the relationship in the first pair of words and complete the second pair accordingly in the following :1. fertile : barren : : scarce :2. beautify : beautiful : : agree :3. rode : road : : night :4. cascade : waterfall : : nimble :

Answer»

1. plenty

2. agreement

3. knight

4. swift

28119.

i1) Evaluate\( \int_{0}^{2 \pi} \sin ^{4} x \cos ^{6} x d x \)

Answer»

\(\int\limits_0^{2\pi}\)sin4x cos6x dx = 4\(\int\limits_0^{\pi/2}\)sin4x cos6x dx

\(=\cfrac{4\Gamma(\frac{4+1}2)\Gamma(\frac{6+1}2)}{2\Gamma(\frac{4+6+2}2)}\) 

\(=\cfrac{2\Gamma(\frac52)\Gamma(\frac72)}{\Gamma(6)}\)

\(=\frac{2\times3/2\times1/2\,\Gamma(1/2)\times5/2\times3/2\times1/2\,\Gamma(1/2)}{(5\times4\times3\times2\times1)}\) 

\(=\frac{3}{16\times8}\pi.\pi\) (\(\because\) \(\Gamma(1/2)=\sqrt{\pi}\))

\(=\frac{3\pi}{128}\)

28120.

Integrate: \[ \int \frac{\sin a \cos a}{2 \cos ^{2} a-1} d a \] Show your steps.

Answer»

Let I = \(\int {\cfrac{sin a \,cosa}{2cos^2a-1}}{da}\)

Put 2cos2 a - 1 = t

= - 4 cos a sin a da = dt

= sin a cos a da = \(-\cfrac{dt}4\)

\(\therefore\) I = \(\cfrac{-1}4\int\)  \(\cfrac{dt}t\) = \(\cfrac{-1}4\) lnt + c

\(\cfrac{-1}4\) ln |2cos2 a - 1 | + c (\(\because\) t = 2 cos2 a - 1)

28121.

Find:\(\int\frac{(6x^2-6x+5)dx}{\sqrt{2x^3-3x^2+5x-7}}\)Integrate (6x2 - 6x + 5)/(√(2x3 - 3x2 + 5x - 7)

Answer»

Let I = \(\int\frac{(6x^2-6x+5)dx}{\sqrt{2x^3-3x^2+5x-7}}\)

Let 2x3 - 3x2 + 5x - 7 = t

⇒ (6x2 - 6x + 5)dx = dt

\(\therefore\) I = \(\int\frac{dt}{\sqrt t}=2t^{1/2} + c\)

Hence,  \(\int\frac{(6x^2-6x+5)dx}{\sqrt{2x^3-3x^2+5x-7}}\) 

 = \(2\sqrt{2x^3-3x^2+5x-7}+c\).

28122.

Find:\( \int_{1}^{2}[2 x] d x \)

Answer»

\(\int\limits_1^2[2x]dx\) = \(\int\limits_1^{3/2}[2x]dx\) = \(\int\limits_{3/2}^2[2x]dx\)

 = \(\int\limits_1^{3/2}2dx+\int\limits_{3/2}^2 3dx\) 

 = \(2[x]_1^{3/2}+3[x]^2_{3/2}\)

 = 2(32/ - 1) + 3(2 - 3/2)

 = 2 x 1/2 + 3 x 1/2 = 5/2

28123.

Turkey has entered _____ a new trade agreement with Germany. A) to B) with C) at D) into

Answer»

Correct option is D) into

28124.

The bus is coming round the corner The tense of the verb in the given sentence is(A) Simple past(B) Simple present(C) Past continuous(D) Present continuous

Answer»

(D) Present continuous

28125.

\(∫ (1+cos^2 x+tan^2 x) / (sin^2) dx\)\( ∫ (x^4-8x)/(x-2) dx\)\(∫(x+1)√(2-x) dx \)\(∫(cos θ)/√1-sinθ dx \)

Answer»

1. \(\int \frac{1 + cos^2x + tan^2x}{sin^2x}dx\)

\(=\int (cosec^2x + cot^2x+sec^2x)dx\)

\(=\int(2cosec^2x-1+sec^2x)dx\,\,\,\,\,\,\,\,\,(\because cot^2x = cosec^2x-1)\)

\(=2\int cosec^2x\,dx-\int dx + \int sec^2x dx\)

= -2 cot x - x + tan x +C

2. \(\int \frac{x^4-8x}{x -2 }dx\)

\(\int \frac{(x-2)(x^3+2x^2+4x)}{x-2}dx\)

\(\int (x^3+2x^2+4x)dx\)

\(\frac{x^4}{4}+\frac{2x^3}{3}+\frac{4x^2}{2}+C\)

\(\frac{x^4}{4}+\frac23x^3+2x^2 + C\)

3. Let I = \(\int(x+1)\sqrt{2-x}\,\,\,\,\,dx\)

Let 2 - x = f2 

⇒ x = 2 - f2

⇒ -dx = 2tdt

⇒ dx = -2tdt

\(\therefore\) I = \(-\int(2-t^2+1)t.2tdt\)

\(-2\int(3t^2-t^4)dt\)

\(-2[3\frac{t^3}3-\frac{t^5}5]+C\)

= \(-2(t^3- \frac{t^5}5)+C\)

\(-2((2-x)^{\frac32}-\frac15(2-x)^{\frac52})+C\)

\(-2(2-x)^{\frac32}-\frac25(2-x)^{\frac52}+C\)

\(\therefore\) \(\int(x+1)\sqrt{2-x}\,\,\,\,dx\)  = \(-2(2-x)^{\frac32}-\frac25(2-x)^{\frac52}+C\)

4. Let I = \(\int\frac{cos\theta}{\sqrt{1-sin\theta}}\,\,\,d\theta\)

Put 1 - sinθ = t2

⇒ - cosθ dθ = 2tdt

⇒ cosθ dθ = -2tdt

\(\therefore\) i = \(\int\frac{-2tdt}t= -2\int dt\)

= -2t + C

\(-2\sqrt{1-sin\theta}+C\)

\(\therefore\) \(\int\frac{cos\theta}{\sqrt{1-sin\theta}}\,\,\,d\theta\) = \(-2\sqrt{1-sin\theta}+C\)

28126.

This is the solution _____ all problems. A) of B) by C) with D) to

Answer»

Correct option is D) to

28127.

15. \( \frac{d y}{d x}+\frac{y^{2}+1}{x^{2}+1}=0 \)

Answer»

\(\frac{dy}{dx}+\frac{y^2+1}{x^2+1}=0\)

⇒ \(\frac{dy}{y^2+1}+\frac{dx}{x^2+1}=0\)

⇒ tan-1y + tan-1x = c (On integrating both sides)

28128.

The country is rich _____ natural resources. A) for B) by C) with D) in

Answer»

Correct option is D) in

28129.

You can borrow my dictionary, but I must have it back _____ Monday. A) by B) until C) till D) to

Answer»

Correct option is A) by

28130.

\( \int \frac{\tan ^{-1} x}{1+\frac{1}{x^{2}}} d x \)

Answer»

\(\int\frac{tan^{-1}x}{1+\frac1{x^2}}dx\) = \(\int\frac{x^2tan^{-1}x}{1+x^2}dx\)

put tan-1 x = t

⇒ \(\frac1{1+x^2}dx=dt\)

\(\therefore\) \(\int\)\(\cfrac{tan^{-1}x}{1+\frac1{x^2}}dx\) = \(\int t\,tan^2t dt\) 

= t\(\int tan^2 t dt\) - \(\int 1.(tan t - t)dt\) 

 (\(\because\) \(\int\) tan2 t dt = \(\int(sec^2t-1)dt= tan t - t\))

 = t(tan t - t) - log sec t + \(\frac{t^2}2+c\)

 = t tan t - \(\frac{t^2}2\) - log sec t + c

 = t tan t - \(\frac{t^2}2\) - log (\(\sqrt{1+tan^2t}+c\))

 = x tan-1x - \(\frac12(tan^{-1}x)^2\) - log\(\sqrt {1+x^2}\) + c

Hence, \(\int\cfrac{tan^{-1}x}{1+\frac1{x^2}}dx\) = x tan-1x - \(\frac12\) (tan-1x)2 - log\(\sqrt{1+x^2}+c\)

28131.

When Fred ______ happy he sings. A) will be B) was C) is D) has been

Answer»

Correct option is C) is

28132.

Has he ever ______ to Paris ? A) been B) were C) was D) go

Answer»

Correct option is A) been

28133.

If we went to live in the tropics. I _____ buy some thin clothes. A) will have to B) have to C) would have to D) have had to

Answer»

Correct option is C) would have to

28134.

_______leads to Physical damage, illness, quality of life, mental and social problems. a) Stress b) Time c) Mind

Answer»

a) Stress

Stress leads to Physical damage, illness, quality of life, mental and social problems.

28135.

When you go to the shops, bring me ________ . A) a fruit tin B) a fruits tin C) a tin of fruit D) a tin of fruits

Answer»

Correct option is C) a tin of fruit

28136.

“_____ did you go?” “To buy some new clothes.” A) When B) Why C) Where D) How

Answer»

Correct option is B) Why

28137.

“_____ did you go?” “To the shops.” A) When B) Why C) Where D) How

Answer»

Correct option is C) Where

28138.

Tell us ______ your holiday. A) on B) of C) about D) with

Answer»

Correct option is C) about

28139.

Evaluate the following:\( \int \frac{\sqrt{x}}{\sqrt{1-x^{2}}} d x=? \)

Answer»

\(\int\frac{\sqrt x}{\sqrt{1-x^2}}dx\)

Let 

1 - x2 = t2

-2xdx = 2tdt

⇒ xdx = -tdt

∴ \(\int\frac{\sqrt x\,dx}{\sqrt{1-x^2}}=-\int\frac{tdt}{t\sqrt{1-t^2}}\)

\(= -\int\frac{dt}{\sqrt{1-t^2}}\)

= - sin-1 t + C

= - sin-1 \(\sqrt{1-x^2}\) + C

28140.

She is worried ______ her exams. A) of B) about C) with D) on

Answer»

Correct option is B) about

28141.

She is worried ______ her exams. A) of B) about C) with D) was

Answer»

Correct option is B) about 

28142.

\( \int \frac{d z}{\left[a^{2}+(a-z)^{2}\right]3 / 2} \)\(\int\frac{dz}{[a^2+(a-z)^2]^{3/2}}\)

Answer»

integration dt|{a^2+(a-z)^2}^3/2 

let a-z=t ,-dz=dt 

integration -dt/(a^2+t^2)^3/2

integration -dt/t^3(a^2/t^2+1)^3/2

let a^2/t^2 =k , -2a^2)t^3 ×dt =dk 

dt/t^3 =dk/ -2a^2 

1/2a^2 integration dk/(k+1)^3/2

1/2a^2 { (k+1)^-3/2+1/-3/2+1}

1/2a^2 {(k+1)^-1/2 /-1/2 } +C 

1/2a^2 ×-2{1/(k+1)^1/2 } +C 

-1/a^2 {1/{a^2/(a-z)^2+1}1/2}+C 

-1/a^2{1/{a^2+(a-z)^2/(a-z)^2}1/2}

-1/a^2{ a-z/(a^2+(a-z)^2}1/2 }  +C answr 






Let I = \(\int\frac{dz}{[a^2+(a-z)^2]^{3/2}}\)

Put a - z = a tan θ

⇒ dz = -asec2 θ dθ

\(\therefore\) I = \(-\int\frac{asec^2\theta d\theta}{(a^2+a^2tan^2\theta)^{3/2}}\) 

 = \(-\int\frac{asec^2\theta d\theta}{a^3(1+tan^2\theta)^{3/2}}\) 

 = \(-\frac1{a^2}\int\frac{sec^2\theta d\theta}{sec^3\theta}\)

( ∵ 1 + tan2 \(\theta\) = sec2 \(\theta\)

= -\(\frac1{a^2}\int\frac1{sec\theta}d\theta\)

= - \(\frac1{a^2}\int cos\theta d\theta\) 

\(-\frac{sin\theta}{a^2}\) ( ∵ \(\int cos\theta=sin\theta\))

 = \(-\frac1{a^2}\frac{tan\theta}{\sqrt{1+tan^2\theta}}\) (∵ sin \(\theta\) = \(\frac{tan\theta}{\sqrt{1+tan^2\theta}}\))

 =  \(-\frac1{a^2}\cfrac{\frac{a-z}a}{\sqrt{1+\frac{(a-z)^2}{a^2}}}\) \((\because tan\theta=\frac{a-z}a)\)

\(=-\frac1{a^2}\frac{a-z}{\sqrt{a^2+(a-z)^2}}\)

Hence, \(\int\frac{dz}{[a^2+(a-z)^2]^{3/2}}\) = \(-\frac1{a^2}\frac{a-z}{\sqrt{a^2+(a-z)^2}}\)

28143.

\( \int \frac{3 x+4}{\sqrt{5 x^{2}+8}} \)

Answer»

\(\int\frac{3x+4}{\sqrt{5x^2+8}}dx\)

 = \(\int(\frac{3x}{\sqrt{5x^2+8}}+\frac4{\sqrt{5x^2+8}})dx\) 

 = \(\frac3{10}\int\frac{10x}{\sqrt{5x^2+8}}dx+\frac4{\sqrt 5}\int\frac{dx}{\sqrt{x^2+(\sqrt{\frac85})^2}}\)

 = \(\frac3{10}(2\sqrt{5x^2+8})\) + \(\frac4{\sqrt 5}log|x + \sqrt{x^2+\frac85}|+k\) 

 = \(\frac35\sqrt{{5x^2+8}}\)  + \(\frac4{\sqrt 5}log(\frac{\sqrt5x+\sqrt{5x^2+8}}{\sqrt5})+k\) 

 = \(\frac35\sqrt{{5x^2+8}}\) + \(\frac4{\sqrt 5}log(\sqrt 5x+\sqrt{5x^2+8})\) - \(\frac4{\sqrt5}log\sqrt5+k\) 

 = \(\frac35\sqrt{{5x^2+8}}\) + \(\frac4{\sqrt 5}log(\sqrt5x + \sqrt{5x^2+8})+c\)

28144.

Find:\( \int \frac{2 x}{\left(x^{2}+1\right) \times\left(x^{2}+2\right)^{2}} d x \)

Answer»

\( I = \int\frac{2x}{(x^2 + 1)(x^2 + 2)^2}dx\)

Let x2 = t

2x dx = dt

\(\therefore I = \int \frac{dt}{(t+1)(t+2)^2}\)

Let \(\frac{1}{(t + 1)(t + 2)^2} = \frac{A}{t+1}+ \frac{B}{t+2}+\frac{C}{(t+2)^2}\)

⇒ I = A (t + 2)2 + B(t +1) (t + 2) + c(t +1)

Put t = -1, we get 

A = 1

Put t = -2, we get 

C = -1

Put t = 0, we get

4A + 2B + C = 1

⇒ 2B + 4 - 1 = 1

⇒ 2B = -2

⇒ B = -1

\(\therefore \frac{1}{(t +1)(t +2)^2}= \frac1{t+1}-\frac1{t+2}-\frac1{(t+2)^2}\)

\(\therefore I = \int \left(\frac{1}{t +1}- \frac1{t+ 2}-\frac1{(t + 2)^2}\right)dt = log(t +1) - log (t +2) + \frac1{t+2}+C\)

\(= log \left|\frac{t+1}{t+2}\right|+ \frac1 {t+2}+C \)

\(= \log\left|\frac{x^2 +1}{x^2 +2 }\right|+\frac{1}{x^2+2}+C\)

28145.

The first derivative of a function \( f(x) \) is given below.\(\frac{e^x(x -1)}{x^2}\)If f(1) = e + 3, find f(x). Show your steps.

Answer»

\(f^1(x) = \frac{e^x(x -1)}{x^2}\)

\(f(x) = \int\frac{xe^x - e^x}{x^2}dx +c\)

\(= \int e^x(\frac1x - \frac1{x^2})dx +c\)

\(=\frac{e^x}{x}+C\) 

\(\left(\therefore \int e^x (f(x) + f^1(x))dx = e^xf(x) + c \right)\) 

\(\left(Here\,f(x) = \frac1x⇒f^1(x) = \frac{-1}{x^2}\right)\)

\(\because f (1) = e +3\)

⇒ \(e + 3 = e + c\)

\(c =3\)

\(\therefore f(x) = \frac{e^x}{x} +3\)

28146.

Find: \( \int \frac{2x+1}{\sqrt{x^{2}+10x+9}} d x \)

Answer»

\(\int\frac{2x+1}{\sqrt{x^2+10x+9}}\)dx

 = \(\int\frac{2x+10-9}{\sqrt{x^2+10x+9}}dx\)

 = \(\int\frac{2x+10}{\sqrt{x^2+10x+9}}dx\) - 9\(\int\frac{1}{\sqrt{(x+5)^2-16}}dx\)

 = 2\(\sqrt{x^2+10x+9}\) - 9log|x + 5 + \(\sqrt{x^2+10x+9}\)| + c

28147.

Ferritin is (A) Coenzyme (B) One of the component of photophosphorylation(C) It is the stored form of iron (D) Non-protein moiety

Answer»

(C) It is the stored form of iron

28148.

Ferritin is present in (A) Intestinal mucosa (B) Liver (C) Spleen (D) All of these

Answer»

(D) All of these

28149.

She opened her mouth so the doctor could look _____ her throat. A) to B) on C) at D) for

Answer»

Correct option is C) at 

28150.

I was not ________ that I had cut myself until I saw the blood all over my hand. A) familiar B) awake C) disturbed D) astonished E) conscious

Answer»

Correct option is E) conscious