| 1. |
\(∫ (1+cos^2 x+tan^2 x) / (sin^2) dx\)\( ∫ (x^4-8x)/(x-2) dx\)\(∫(x+1)√(2-x) dx \)\(∫(cos θ)/√1-sinθ dx \) |
|
Answer» 1. \(\int \frac{1 + cos^2x + tan^2x}{sin^2x}dx\) \(=\int (cosec^2x + cot^2x+sec^2x)dx\) \(=\int(2cosec^2x-1+sec^2x)dx\,\,\,\,\,\,\,\,\,(\because cot^2x = cosec^2x-1)\) \(=2\int cosec^2x\,dx-\int dx + \int sec^2x dx\) = -2 cot x - x + tan x +C 2. \(\int \frac{x^4-8x}{x -2 }dx\) = \(\int \frac{(x-2)(x^3+2x^2+4x)}{x-2}dx\) = \(\int (x^3+2x^2+4x)dx\) = \(\frac{x^4}{4}+\frac{2x^3}{3}+\frac{4x^2}{2}+C\) = \(\frac{x^4}{4}+\frac23x^3+2x^2 + C\) 3. Let I = \(\int(x+1)\sqrt{2-x}\,\,\,\,\,dx\) Let 2 - x = f2 ⇒ x = 2 - f2 ⇒ -dx = 2tdt ⇒ dx = -2tdt \(\therefore\) I = \(-\int(2-t^2+1)t.2tdt\) = \(-2\int(3t^2-t^4)dt\) = \(-2[3\frac{t^3}3-\frac{t^5}5]+C\) = \(-2(t^3- \frac{t^5}5)+C\) = \(-2((2-x)^{\frac32}-\frac15(2-x)^{\frac52})+C\) = \(-2(2-x)^{\frac32}-\frac25(2-x)^{\frac52}+C\) \(\therefore\) \(\int(x+1)\sqrt{2-x}\,\,\,\,dx\) = \(-2(2-x)^{\frac32}-\frac25(2-x)^{\frac52}+C\) 4. Let I = \(\int\frac{cos\theta}{\sqrt{1-sin\theta}}\,\,\,d\theta\) Put 1 - sinθ = t2 ⇒ - cosθ dθ = 2tdt ⇒ cosθ dθ = -2tdt \(\therefore\) i = \(\int\frac{-2tdt}t= -2\int dt\) = -2t + C = \(-2\sqrt{1-sin\theta}+C\) \(\therefore\) \(\int\frac{cos\theta}{\sqrt{1-sin\theta}}\,\,\,d\theta\) = \(-2\sqrt{1-sin\theta}+C\) |
|