| 1. |
\( \int \frac{d z}{\left[a^{2}+(a-z)^{2}\right]3 / 2} \)\(\int\frac{dz}{[a^2+(a-z)^2]^{3/2}}\) |
|
Answer» integration dt|{a^2+(a-z)^2}^3/2 let a-z=t ,-dz=dt integration -dt/(a^2+t^2)^3/2 integration -dt/t^3(a^2/t^2+1)^3/2 let a^2/t^2 =k , -2a^2)t^3 ×dt =dk dt/t^3 =dk/ -2a^2 1/2a^2 integration dk/(k+1)^3/2 1/2a^2 { (k+1)^-3/2+1/-3/2+1} 1/2a^2 {(k+1)^-1/2 /-1/2 } +C 1/2a^2 ×-2{1/(k+1)^1/2 } +C -1/a^2 {1/{a^2/(a-z)^2+1}1/2}+C -1/a^2{1/{a^2+(a-z)^2/(a-z)^2}1/2} -1/a^2{ a-z/(a^2+(a-z)^2}1/2 } +C answr Let I = \(\int\frac{dz}{[a^2+(a-z)^2]^{3/2}}\) Put a - z = a tan θ ⇒ dz = -asec2 θ dθ \(\therefore\) I = \(-\int\frac{asec^2\theta d\theta}{(a^2+a^2tan^2\theta)^{3/2}}\) = \(-\int\frac{asec^2\theta d\theta}{a^3(1+tan^2\theta)^{3/2}}\) = \(-\frac1{a^2}\int\frac{sec^2\theta d\theta}{sec^3\theta}\) ( ∵ 1 + tan2 \(\theta\) = sec2 \(\theta\)) = -\(\frac1{a^2}\int\frac1{sec\theta}d\theta\) = - \(\frac1{a^2}\int cos\theta d\theta\) = \(-\frac{sin\theta}{a^2}\) ( ∵ \(\int cos\theta=sin\theta\)) = \(-\frac1{a^2}\frac{tan\theta}{\sqrt{1+tan^2\theta}}\) (∵ sin \(\theta\) = \(\frac{tan\theta}{\sqrt{1+tan^2\theta}}\)) = \(-\frac1{a^2}\cfrac{\frac{a-z}a}{\sqrt{1+\frac{(a-z)^2}{a^2}}}\) \((\because tan\theta=\frac{a-z}a)\) \(=-\frac1{a^2}\frac{a-z}{\sqrt{a^2+(a-z)^2}}\) Hence, \(\int\frac{dz}{[a^2+(a-z)^2]^{3/2}}\) = \(-\frac1{a^2}\frac{a-z}{\sqrt{a^2+(a-z)^2}}\) |
|