1.

Evaluate the following:\( \int \frac{\sqrt{x}}{\sqrt{1-x^{2}}} d x=? \)

Answer»

\(\int\frac{\sqrt x}{\sqrt{1-x^2}}dx\)

Let 

1 - x2 = t2

-2xdx = 2tdt

⇒ xdx = -tdt

∴ \(\int\frac{\sqrt x\,dx}{\sqrt{1-x^2}}=-\int\frac{tdt}{t\sqrt{1-t^2}}\)

\(= -\int\frac{dt}{\sqrt{1-t^2}}\)

= - sin-1 t + C

= - sin-1 \(\sqrt{1-x^2}\) + C



Discussion

No Comment Found

Related InterviewSolutions