1.

Determine:(a) \( \int_{0}^{\sqrt{3}+2} \int_{0}^{\pi / 3}(2 \cos \theta-3 \sin 3 \theta) d \theta d r \)

Answer»

\(\int \limits _0 ^{\sqrt3 +2} \left[ \int \limits_0^{\frac \pi 3}(2\, cos \, \theta - 3 \, sin \, 3 \, \theta)d\theta\right]dr\)

\(\int \limits_0^{\sqrt3 +2}dr \left[ 2\, sin \, \theta + cos \, 3 \theta \right]_0^{\frac \pi 3}\)

= \(\left[r\right]_0^{\sqrt3 +2} \)  ( 2 sin \(\frac \pi 3\) + cos \(\pi\) - 2 sin 0 - cos 0)

= (\(\sqrt3 \) + 2 -0) (  2 x \(\frac {\sqrt3}{2}\) -1 -1)

= (\(\sqrt 3\) +2) ( \(\sqrt 3\) -2)

= 3-4

= -1



Discussion

No Comment Found

Related InterviewSolutions