Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

6501.

Find domain and range of f(x)=-x

Answer» Domain=RRange=R
6502.

2x-3/3x-7>0\xa0

Answer» 2x-33x-7>0Case-1:\xa02x-3>0\xa0and\xa03x-7>0⇒x>32\xa0and\xa0x>73⇒x>73Case-22x-3<0\xa0and\xa03x-7<0⇒x<32\xa0and\xa0x<73⇒x<32-∞,32∪73,∞\xa0is\xa0the\xa0solution\xa0set
6503.

Linear inequality miscellaneous problem 20th\xa0\xa0

Answer»
6504.

If tan=1/3 and tan b=1/2 . prove that sin2(a+b)=1

Answer» {tex}Given\\,that{/tex}{tex}\\tan A = {1 \\over 3}\\,and\\,\\tan B = {1 \\over 2}{/tex}{tex}Now\\,\\,\\tan \\left( {A + B} \\right) = {{\\tan A + \\tan B} \\over {1 - tan A \\cdot \\tan B}}{/tex}{tex} = {{\\left( {{1 \\over 3} + {1 \\over 2}} \\right)} \\over {\\left( {1 - {1 \\over 3} \\cdot {1 \\over 2}} \\right)}}{/tex}{tex} = {{\\left( {{5 \\over 6}} \\right)} \\over {\\left( {{5 \\over 6}} \\right)}}{/tex}{tex}\\tan \\left( {A + B} \\right) = 1{/tex}{tex}A + B = {45^ \\circ }{/tex}{tex}Now\\,Sin2\\left( {A + B} \\right) = \\sin \\left( {2 \\times {{45}^ \\circ }} \\right){/tex}{tex} = \\sin {90^ \\circ }{/tex}{tex}\\sin 2\\left( {A + B} \\right) = 1{/tex}
6505.

If A.M and G.M of two positive number a and b are 10 and 8 respectively find the number

Answer» {tex}let\\,two\\,numbers\\,be\\,a\\,and\\,b{/tex}{tex}A.M. = {{a + b} \\over 2} = 10{/tex}{tex}a + b = 20 \\ldots \\ldots \\left( 1 \\right){/tex}{tex}G.M. = \\sqrt {ab} = 8{/tex}{tex}ab = 64 \\ldots \\ldots \\left( 2 \\right){/tex}{tex}Now\\,{\\left( {a - b} \\right)^2} = {\\left( {a + b} \\right)^2} - 4ab{/tex}{tex} = {\\left( {20} \\right)^2} - 4 \\times 64{/tex}{tex} = 400 - 256{/tex}{tex}{\\left( {a - b} \\right)^2} = 144{/tex}{tex}a - b = \\pm 12 \\ldots \\ldots \\left( 3 \\right){/tex}{tex}solving\\,\\left( 1 \\right)\\,and\\,\\left( 3 \\right){/tex}{tex}a = 4,b = 16\\,or\\,a = 16,b = 4{/tex}{tex}hence\\,two\\,numbers\\,are\\,4\\,and\\,16\\,or\\,16\\,and\\,4.{/tex}
6506.

Differentiate Sin2\xa0x with respect to x from 1st principle method\xa0

Answer» Ans. By First Principle \\(f\'(x) = lim_{h\\to 0} \\space{ f(x+h) - f(x) \\over h}\\)\\(=> lim_{h\\to 0} \\space{ sin^2(x+h) - sin^2x \\over h}\\)\\(=> lim_{h\\to 0} \\space{ [sin(x+h) + sinx]\\times [sin(x+h) - sinx]\\over h}\\)\\([Using \\space (a^2 - b^2) = (a+b)(a-b)]\\)\\(=> lim_{h\\to 0} \\space{2 sin({x+h+x\\over 2}) cos({x+h-x\\over 2})\\times 2cos({x+h+x\\over 2}) sin({x+h-x\\over 2})\\over h}\\)\\([Using \\space sin a + sin b = 2 sin({a+b\\over 2})cos ({a-b\\over 2})\\)\xa0and\xa0\\( sin a - sin b = 2 cos({a+b\\over 2})sin ({a-b\\over 2})]\\)\\(=> lim_{h\\to 0} \\space4{ sin({2x+h\\over 2}) cos{h\\over 2} \\space cos({2x+h\\over 2}) sin{h\\over 2}\\over h}\\)\\(=> \\space4 sin({2x+0\\over 2}) cos{0\\over 2} \\space cos({2x+0\\over 2}) lim_{h\\to 0} {sin{h\\over 2}\\over {2h\\over 2}}\\)\\(=> 4 sin x. cos 0. cos x. lim_{{h\\over 2}\\to 0} {1\\over 2}{sin{h\\over 2}\\over {h\\over 2}}\\)\\([as \\space h \\to 0, then, {h\\over 2}\\to 0 ]\\)\\(=> 4 sin x. cos x. {1\\over 2}\\)\\([Using \\space Identity, lim_{x \\to 0 } \\space {sinx \\over x } = 1]\\)\\(=> 2 sin x. cos x\\)
6507.

If tan a=1÷3,tan b=1÷2 then prove thatSin2(a+b)=1

Answer» is this a correct question
6508.

Write the domain of function of f(x)=[X^2-2x+3]÷[x^2- x-20]

Answer» f(x) =\xa0\\((x^2 - 2x +3)/((x+4)(x-5))\\)So Since denominator should not be zero therefore x should not be -4 and 5Hence domain x belongs to R - {-4,5}
6509.

Find the term independent of x in the expansion of (x÷√3+√3÷2x^2)

Answer»
6510.

If X and Y are acute angels such that sinX=1/√5 and sinY =1/√10 prove that (x+y)=π/4.

Answer» Ans. Given : {tex}sin X = {1\\over \\sqrt 5}{/tex},\xa0{tex}sin Y = {1\\over \\sqrt {10}}{/tex}X =\xa0{tex}sin^{-1}({1\\over \\sqrt 5}){/tex}Y =\xa0{tex}sin^{-1}({1\\over \\sqrt {10}}){/tex}=> X+Y =\xa0{tex}sin^{-1}({1\\over \\sqrt 5}) + sin^{-1}({1\\over \\sqrt {10}}){/tex}{tex}[using \\ \\ sin^{-1} a + sin^{-1} b = sin^{-1}(a\\sqrt{1-b^2}+b\\sqrt{1-a^2})]{/tex}{tex}=> X+Y = sin^{-1}\\left ( {1\\over \\sqrt 5} \\sqrt {1- {1\\over 10}} + {1\\over \\sqrt {10}} \\sqrt {1- {1\\over 5}}\\right ){/tex}\xa0{tex}=> X+Y = sin^{-1}\\left ( {3\\over \\sqrt {50}} + {2\\over \\sqrt {50}} \\right ){/tex}{tex}=> X+Y = sin^{-1}\\left ( {5\\over 5\\sqrt 2} \\right ){/tex}{tex}=> X+Y = sin^{-1}\\left ( {1\\over \\sqrt 2} \\right ){/tex}{tex}=> X+Y = sin^{-1}\\left ( sin {\\pi \\over 4} \\right ){/tex}{tex}=> X+Y = {\\pi \\over 4} {/tex}Hence Proved
6511.

If cosecA+secA=cosecB+secB, then show that tanAtanB=cot(A+B)/2\xa0

Answer» {tex}\\cos ec{\\rm{A}} + \\sec {\\rm{A}} = \\cos ec{\\rm{B}} + \\sec {\\rm{B}}{/tex}=> {tex}\\cos ec{\\rm{A}} - \\cos ec{\\rm{B}} = \\sec {\\rm{A}} - \\sec {\\rm{B}}{/tex}=> {tex}{1 \\over {\\sin {\\rm{A}}}} - {1 \\over {\\sin {\\rm{B}}}} = {1 \\over {\\cos {\\rm{A}}}} - {1 \\over {\\cos {\\rm{B}}}}{/tex}=> {tex}{{\\sin {\\rm{B}} - \\sin {\\rm{A}}} \\over {\\sin {\\rm{A}}{\\rm{.}}\\sin {\\rm{B}}}} = {{\\cos {\\rm{B}} - \\cos {\\rm{A}}} \\over {\\cos {\\rm{A}}{\\rm{.cos B}}}}{/tex}=> {tex}{{2\\sin {{{\\rm{B}} - {\\rm{A}}} \\over 2}\\cos {{{\\rm{B}} + {\\rm{A}}} \\over 2}} \\over {\\sin {\\rm{A}}{\\rm{.}}\\sin {\\rm{B}}}} = {{2\\sin {{{\\rm{B}} - {\\rm{A}}} \\over 2}\\sin {{{\\rm{B}} + {\\rm{A}}} \\over 2}} \\over {\\cos {\\rm{A}}{\\rm{.cos B}}}}{/tex}=> {tex}{{\\cos {{{\\rm{B}} + {\\rm{A}}} \\over 2}} \\over {\\sin {{{\\rm{B}} + {\\rm{A}}} \\over 2}}} = {{\\sin {\\rm{A}}{\\rm{.}}\\sin {\\rm{B}}} \\over {\\cos {\\rm{A}}{\\rm{.cos B}}}}{/tex}=> {tex}\\cot {{{\\rm{B}} + {\\rm{A}}} \\over 2} = \\tan {\\rm{A}}{\\rm{.}}\\tan {\\rm{B}}{/tex}=> {tex}\\tan {\\rm{A}}{\\rm{.}}\\tan {\\rm{B = }}\\cot {{{\\rm{B}} + {\\rm{A}}} \\over 2}{/tex}\xa0
6512.

a-(a-b)=a∩b

Answer»
6513.

(1+cotA+tanA)(sinA-cosA)=secA/cosec2A-cosecA/sec2A\xa0

Answer» I can\'t understand
L.H.S.{tex}\\left( {1 + \\cot {\\rm{A}} + \\tan {\\rm{A}}} \\right)\\left( {\\sin {\\rm{A}} - \\cos {\\rm{A}}} \\right){/tex}= {tex}\\left( {1 + {{\\cos {\\rm{A}}} \\over {\\sin {\\rm{A}}}} + {{\\sin {\\rm{A}}} \\over {\\cos {\\rm{A}}}}} \\right)\\left( {\\sin {\\rm{A}} - \\cos {\\rm{A}}} \\right){/tex}= {tex}{{\\left( {\\sin {\\rm{A}} - \\cos {\\rm{A}}} \\right)\\left( {\\sin {\\rm{AcosA}} + {{\\sin }^2}{\\rm{A}} + {{\\cos }^2}{\\rm{A}}} \\right)} \\over {\\sin {\\rm{AcosA}}}}{/tex}= {tex}{{{{\\sin }^3}{\\rm{A}} - {{\\cos }^3}{\\rm{A}}} \\over {\\sin {\\rm{AcosA}}}}{/tex}= {tex}{{{{\\sin }^2}{\\rm{A}}} \\over {{\\rm{cosA}}}} - {{{{\\cos }^2}{\\rm{A}}} \\over {\\sin {\\rm{A}}}}{/tex}= {tex}{1 \\over {{\\rm{cosA}}}}.{{{{\\sin }^2}{\\rm{A}}} \\over 1} - {1 \\over {{\\rm{sinA}}}}.{{{{\\cos }^2}{\\rm{A}}} \\over 1}{/tex}= {tex}{{\\sec {\\rm{A}}} \\over {\\cos e{c^2}{\\rm{A}}}} - {{\\cos ec{\\rm{A}}} \\over {{{\\sec }^2}{\\rm{A}}}}{/tex}= R.H.S.
6514.

If f is a real function defined by f(x)=x-1/x+1,then prove that : f(2x)=3f(x)+1/f(x)+3

Answer»
6515.

Convert 4 Radian into degree measure

Answer» Radian measure =\xa0{tex}{\\pi\\over 180}\\times degree\\ measure{/tex}So,\xa0Degree measure =\xa0{tex}{18\\over \\pi}\\times radian \\ measure{/tex}=> Degree measure =\xa0{tex}{180\\over 22}\\times 7\\times 4{/tex}= 229.09\xa0
6516.

Prove that cos^2A+cos^2(A+120)+cos^2(A-120)=3/2

Answer» Cos5θ=16〖Sin〗^5 θ-20〖Sin〗^3 θ+5cosθ
{tex}{\\cos ^2}2{\\rm{A}} + {\\cos ^2}2\\left( {{\\rm{A}} + {{120}^ \\circ }} \\right) + {\\cos ^2}2\\left( {{\\rm{A}} - {{120}^ \\circ }} \\right) = {3 \\over 2}{/tex}We know that{tex}{\\cos ^2}{\\rm{A}} = {{1 + \\cos 2{\\rm{A}}} \\over 2}{/tex} ..............(i){tex}{\\cos ^2}2\\left( {{\\rm{A}} + {{120}^ \\circ }} \\right) = {{1 + \\cos \\left( {{\\rm{2A}} + {{240}^ \\circ }} \\right)} \\over 2}{/tex} ..............(ii)And {tex}{\\cos ^2}2\\left( {{\\rm{A}} - {{120}^ \\circ }} \\right) = {{1 + \\cos \\left( {{\\rm{2A}} - {{240}^ \\circ }} \\right)} \\over 2}{/tex}..............(iii)Adding all these three equations,{tex}{\\cos ^2}2{\\rm{A}} + {\\cos ^2}2\\left( {{\\rm{A}} + {{120}^ \\circ }} \\right) + {\\cos ^2}2\\left( {{\\rm{A}} - {{120}^ \\circ }} \\right){/tex}\xa0= {tex}{3 \\over 2} + {{1 + \\cos 2{\\rm{A}}} \\over 2} + {{1 + \\cos \\left( {{\\rm{2A + }}{{240}^ \\circ }} \\right)} \\over 2} + {{1 + \\cos \\left( {{\\rm{2A}} - {{240}^ \\circ }} \\right)} \\over 2}{/tex}= {tex}{{3 + 1 + \\cos 2{\\rm{A + }}1 + \\cos \\left( {{\\rm{2A + }}{{240}^ \\circ }} \\right) + 1 + \\cos \\left( {{\\rm{2A}} - {{240}^ \\circ }} \\right)} \\over 2}{/tex}= {tex}{{3 + 3 + \\cos 2{\\rm{A}} + \\cos \\left( {{\\rm{2A + }}{{240}^ \\circ }} \\right) + \\cos \\left( {{\\rm{2A}} - {{240}^ \\circ }} \\right)} \\over 2}{/tex}= {tex}{{3 + 3 + \\cos 2{\\rm{A}} + 2\\cos 2{\\rm{A}}.\\cos {{240}^ \\circ }} \\over 2}{/tex}= {tex}{{3 + 3 + \\cos 2{\\rm{A}} - \\cos 2{\\rm{A}}} \\over 2}{/tex}= {tex}{6 \\over 2}{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}{\\cos ^2}2{\\rm{A}} + {\\cos ^2}2\\left( {{\\rm{A}} + {{120}^ \\circ }} \\right) + {\\cos ^2}2\\left( {{\\rm{A}} - {{120}^ \\circ }} \\right) = {3 \\over 2}{/tex}
6517.

If theta is positive acute angle then solve the equation:--4cos^2 theta -- 4 sin theta =1

Answer» {tex}4{\\cos ^2}\\theta - 4\\sin \\theta = 1{/tex}=> {tex}4\\left( {1 - {{\\sin }^2}\\theta } \\right) - 4\\sin \\theta = 1{/tex}=> {tex}4 - 4{\\sin ^2}\\theta - 4\\sin \\theta = 1{/tex}=> {tex} - 4{\\sin ^2}\\theta - 4\\sin \\theta + 4 - 1 = 0{/tex}=> {tex}4{\\sin ^2}\\theta + 4\\sin \\theta - 3 = 0{/tex}=> {tex}4{\\sin ^2}\\theta + 6\\sin \\theta - 2\\sin \\theta - 3 = 0{/tex}=> {tex}2\\sin \\theta \\left( {2\\sin \\theta + 3} \\right) - 1\\left( {2\\sin \\theta + 3} \\right) = 0{/tex}=> {tex}\\left( {2\\sin \\theta + 3} \\right)\\left( {2\\sin \\theta - 1} \\right) = 0{/tex}=> {tex}2\\sin \\theta + 3 = 0{/tex} or {tex}2\\sin \\theta - 1 = 0{/tex}=> {tex}\\sin \\theta = {{ - 3} \\over 2}{/tex} or {tex}\\sin \\theta = {1 \\over 2}{/tex}But {tex}\\theta {/tex}\xa0is positive, therefore, taking{tex}\\sin \\theta = {1 \\over 2}{/tex}=> {tex}\\sin \\theta = \\sin {30^ \\circ }{/tex}=> {tex}\\theta = {30^ \\circ }{/tex}
6518.

convert -3i into polar form.

Answer» Let\xa0{tex}-3i= 0-3i=r\\left( cos\\theta +isin\\theta \\right) {/tex}Comparing real and imaginary parts{tex}rcos\\theta =0.......................\\left( i \\right) \\\\ rsin\\theta =-3....................\\left( ii \\right) \\\\ {/tex}Squaring and adding equations (i) and (ii){tex}{ r }^{ 2 }{ cos }^{ 2 }\\theta +{ { r }^{ 2 } }sin^{ 2 }\\theta =9\\\\ \\Rightarrow { r }^{ 2 }=9\\quad \\quad \\quad \\quad \\quad \\quad \\quad \\left( { \\because cos }^{ 2 }\\theta +sin^{ 2 }\\theta =1 \\right) {/tex}{tex}\\Rightarrow r=3{/tex}Substituting\xa0{tex}r=3{/tex}\xa0in equations (i) and (ii), we get\xa0{tex}cos\\theta =0\\quad and\\quad sin\\theta =-1\\\\ {/tex}So\xa0{tex}\\theta {/tex}\xa0lies in fourth quadrant\xa0{tex}\\therefore \\quad \\theta =\\frac { -\\Pi }{ 2 } {/tex} [ in the fourth quarant format of amplitude or principal argument is\xa0{tex}-\\theta {/tex}\xa0(where {tex}\\theta =\\frac { \\Pi }{ 2 } {/tex}\xa0)\xa0]{tex}-3i=3\\left( cos\\left( \\frac { -\\Pi }{ 2 } \\right) +isin\\left( \\frac { -\\Pi }{ 2 } \\right) \\right) \\\\ \\Rightarrow -3i=3\\left( cos\\left( \\frac { \\Pi }{ 2 } \\right) -isin\\left( \\frac { \\Pi }{ 2 } \\right) \\right) \\quad \\quad \\left[ \\because cos\\left( -\\theta \\right) =cos\\theta \\quad ,sin\\left( -\\theta \\right) =-sin\\theta \\right] {/tex}\xa0
6519.

1+x+x2+....+xn=(1-xn-1)/1-x

Answer»
6520.

Find range and domain of f(x)=x-5

Answer» f(x)=x-5\xa0Domain of a function f is a set of all values of x at which the given function is defind.Here clearly the given function f(x)=x-5 is defind for every real value of x.so domain of f= R (set of real numbers)Range of a function is a set of values of function f(x) at domain of f(x).Range of f= R
6521.

3+25

Answer»
6522.

Codec A/Cosec A-1 + Codec A/Cosec A+1 = 2+2Tan2A - 2 Sec2A

Answer»
6523.

Prove that,(cos30° - sin20°)/(cos40°+ cos20°)=(4cos40°cos80°)/√3\u200b\u200b\u200b\u200b\u200b

Answer»
6524.

A wheel makes 360 revolution in one minute. Through how many radian does it turn in one second?\xa0

Answer»
6525.

Evaluate :- 1+i2+i4+i6+.................+i2n

Answer» if n is even answer is zeroif n is odd answer is one
if n is odd the answer will be zeroif n is even all cancel and answer is 1
We know i\u200b\u200b\u200b\u200b\u200b\u200b2= -1\xa0And\xa0{tex}i^4=(i^2)^2=(-1)^2= 1{/tex}So all the terms having i will be cancelled out. We ll get answer as 1\xa0
6526.

If sum of two numbers is C and their quotient is p/q ,then find number.\xa0

Answer» Let the two numbers are a and b.Then A.T.Q.a+b=C ------(1) and {tex}{a\\over b}={p\\over q}{/tex}\xa0----(2)From eq(2){tex}a={p\\over q}×b{/tex}\xa0---------(3)Substituting this value in eq.(1) we get{tex}{pb\\over q}+b=C{/tex}{tex}{pb+bq\\over q}=C{/tex}pb+bq=C×qb(p+q)=Cq b={tex}{Cq\\over p+q}{/tex}On substituting value of b in eq.(3) we geta={tex}{p\\over q}×{Cq\\over p+q}={pC\\over p+q}{/tex}\xa0
6527.

If a/b=2/3 and b/c=4/5,then find value of a+b/b+c.

Answer» Mehod 1:-\xa0In this method first of all we find value of a and c from given equations in variable b. After that we find a+b and b+c and then divide them.Given\xa0{tex}{a\\over b} ={2\\over 3}{/tex}\xa0and\xa0{tex}{b\\over c}={4\\over 5}{/tex}{tex}=> a={2\\over 3}b{/tex}\xa0and\xa0{tex}{c\\over b}={5\\over 4}{/tex}\xa0{tex}=> c={5\\over 4}b{/tex}Now a+b={tex}{2b\\over 3}+b={2b+3b\\over 3}={5b\\over 3}{/tex}and b+c={tex}b+{5b\\over 4}={4b+5b\\over 4}={9b\\over 4}{/tex}So\xa0{tex}{a+b\\over b+c}={{5b\\over 3}\\over {9b\\over 4}}={5b\\over 3}×{4\\over 9b}{/tex}={tex}{20\\over27}{/tex}Method 2:-Given\xa0{tex}{a\\over b}={2\\over 3}{/tex}\xa0and\xa0{tex}{b\\over c}={4\\over 5}{/tex}Now\xa0{tex}{a+b\\over b+c}={{a+b\\over b}\\over {b+c\\over b}}{/tex} [on dividing numerator and denominator by b] ={tex}{{a\\over b}+{b\\over b}}\\over{{b\\over b} +{c\\over b}}{/tex}={tex}{{a\\over b}}+1\\over{1+{c\\over b}}{/tex}={tex}{{2\\over 3}}+1\\over {1+{5\\over4}}{/tex}={tex}{2+3\\over 3}\\over {4+5\\over 4}{/tex}={tex}{5\\over 3}\\over {9\\over 4}{/tex}={tex}{5\\over 3}×{4\\over 9}{/tex}={tex}20\\over 27{/tex} [by substituting the values of a/b and c/b]
6528.

Using factor theorem, show that a-b, b-c, c-a are the factors of a(b2-c2) +b(c2-a2)\xa0+c(a2-b2).

Answer» If a - b is a factor of given expression, then a - b = 0 => a = bPutting a = b, in the given expression, we getb(b2-c2) +b(c2- b2) +c(b2- b2)= b3 - bc2 + bc2 - b3 + c(0)= 0Therefore, (a - b) is a factor of given expression.Again if (b - c) is a factor of given expression, thenPutting b - c = 0 => b = c in the given expression, we geta(c2 - c2) +c(c2 - a2) + c(a2 - c2)= a(0) + c3 - ca2 + ca2 - c3\xa0= 0Therefore, (b - c) is a factor of given expression.Again if (c - a) is a factor of given expression, thenPutting c - a = 0 => c = a in the given expression, we geta(b2 - a2) + b(a2 - a2) + a(a2 - b2)= ab2 - a3 + b(0) + a3 - ab2= 0Therefore, (c - a) is a factor of given expression
6529.

Factorise I) 1+x4+x8II) x4\xa0\xa0+ 4

Answer» ||)\xa0{tex}{x^4} + 4 = {x^2} + {2^2} = {\\left( {x + 2} \\right)^2} - 2 \\times x \\times 2{/tex} [Since\xa0{tex}{a^2} + {b^2} = {\\left( {a + b} \\right)^2} - 2ab{/tex}]=\xa0{tex}{\\left( {x + 2} \\right)^2} - 4x{/tex}=\xa0{tex}{\\left( {x + 2} \\right)^2} - {\\left( {2\\sqrt x } \\right)^2}{/tex}=\xa0{tex}\\left( {x + 2 - 2\\sqrt x } \\right)\\left( {x + 2 + 2\\sqrt x } \\right){/tex}=\xa0{tex}\\left( {x + 2\\sqrt x + 2} \\right)\\left( {x - 2\\sqrt x + 2} \\right){/tex}\xa0\xa0
|)\xa01+x4+x8 = x8 + x4 + 1Adding and subtracting 2(x4)(1){tex}{\\left( {{x^4}} \\right)^2} + 2\\left( {{x^4}} \\right)\\left( 1 \\right) + {\\left( 1 \\right)^2} - 2\\left( {{x^4}} \\right) + {x^4} = {\\left( {{x^4} + 1} \\right)^2} - {x^4}{/tex}=\xa0{tex}\\left( {{x^4} + 1 + {x^2}} \\right)\\left( {{x^4} + 1 - {x^2}} \\right) = \\left( {{x^4} + {x^2} + 1} \\right)\\left( {{x^4} - {x^2} + 1} \\right){/tex}=\xa0{tex}\\left[ {{{\\left( {{x^2}} \\right)}^2} + 2\\left( {{x^2}} \\right)\\left( 1 \\right) + 1 - 2\\left( {{x^2}} \\right)\\left( 1 \\right) + {x^2}} \\right]\\left( {{x^4} - {x^2} + 1} \\right){/tex}=\xa0{tex}\\left[ {{{\\left( {{x^2} + 1} \\right)}^2} - {x^2}} \\right]\\left( {{x^4} - {x^2} + 1} \\right){/tex}=\xa0{tex}\\left( {{x^2} + 1 + x} \\right)\\left( {{x^2} + 1 - x} \\right)\\left( {{x^4} - {x^2} + 1} \\right){/tex}=\xa0{tex}\\left( {{x^2} + x + 1} \\right)\\left( {{x^2} - x + 1} \\right)\\left( {{x^4} - {x^2} + 1} \\right){/tex}\xa0\xa0
6530.

A wheel makes 360 revolution in one minute. Through how many radians does it turn in one second?\xa0

Answer» In 60sec = 360revolutions\xa0 1 sec =6 revolution\xa01 revolution =2 pie6 revolution = 12 pie
6531.

-2+5i

Answer»
6532.

Is a complex no. Come under -infinity to +infinity

Answer»
6533.

Sin(A-B)/cosA.cosB + sin (B-C)/cosB.cosC +sin (C-A)/cosC.cosA =0

Answer» {tex}{{\\sin \\left( {{\\rm{A}} - {\\rm{B}}} \\right)} \\over {\\cos {\\rm{A}}\\cos {\\rm{B}}}} + {{\\sin \\left( {{\\rm{B}} - {\\rm{C}}} \\right)} \\over {\\cos {\\rm{B}}\\cos {\\rm{C}}}} + {{\\sin \\left( {{\\rm{C}} - {\\rm{A}}} \\right)} \\over {\\cos {\\rm{C}}\\cos {\\rm{A}}}}{/tex}=\xa0{tex}{{\\sin {\\rm{A}}\\cos {\\rm{B}} - \\cos {\\rm{A}}\\sin {\\rm{B}}} \\over {\\cos {\\rm{A}}\\cos {\\rm{B}}}} + {{\\sin {\\rm{B}}\\cos {\\rm{C}} - \\cos {\\rm{B}}\\sin {\\rm{C}}} \\over {\\cos {\\rm{B}}\\cos {\\rm{C}}}} + {{\\sin {\\rm{C}}\\cos {\\rm{A}} - \\cos {\\rm{C}}\\sin {\\rm{A}}} \\over {\\cos {\\rm{C}}\\cos {\\rm{A}}}}{/tex}=\xa0{tex}\\eqalign{ & {{\\sin {\\rm{A}}\\cos {\\rm{B}}\\cos {\\rm{C}} - \\cos {\\rm{A}}\\sin {\\rm{B}}\\cos {\\rm{C}} + \\cos {\\rm{A}}\\sin {\\rm{B}}\\cos {\\rm{C}} - \\cos {\\rm{A}}\\cos {\\rm{B}}\\sin {\\rm{C}} + \\sin {\\rm{C}}\\cos {\\rm{A}}\\cos {\\rm{B}} - \\cos {\\rm{B}}\\cos {\\rm{C}}\\sin {\\rm{A}}} \\over {\\cos {\\rm{A}}\\cos {\\rm{B}}\\cos {\\rm{C}}}} \\cr & \\cr} {/tex}=\xa0{tex}{0 \\over {\\cos {\\rm{A}}\\cos {\\rm{B}}\\cos {\\rm{C}}}}{/tex}= 0Hence proved
Prove 0
6534.

Lim-xtans 1 (x^4_3x^2+2÷x^3 _5x^2+3x+1

Answer»
6535.

Show that the four points (0,0),(1,1),(5,—5)and(6,—4)are concyclic

Answer»
6536.

CosA/a + cosB/b + cosC/c = a^2 + b^2 + c^2

Answer»
6537.

prove by mathmetical induction n2+n is even

Answer»
6538.

Binomial theorems(4x/5 -5/2x)

Answer»
6539.

TanA.+TanB+TanC=TanA.TanB.TanC prove that

Answer»
6540.

What is the value of tan 15°

Answer» We can find its value as follows:-tan15°= tan(45°-30°) = {tex}{tan 45° - tan30°\\over 1+tan45°tan30°}{/tex} = {tex}{1- {1\\over {\\sqrt 3}}}\\over1+1×{1\\over {\\sqrt 3}}{/tex} = {tex}{{{\\sqrt 3}-1}\\over {\\sqrt 3}}\\over {{{\\sqrt 3}+1}\\over {\\sqrt 3}}{/tex} = {tex}{\\sqrt 3}-1\\over {\\sqrt 3}+1{/tex}
6541.

Cos20.cos40.cos60.cos80=1/16

Answer» =(1/8)cos80°+(1/8)cos100°+(1/8)cos60°=(1/8)(cos80°+cos100°)+(1/8)×(1/2)=(1/8)[{2cos(80°+100°)/2}{cos(80°-100°)/2}]+(1/16)=(1/8)(2cos90°cos10°)+(1/16)=0+(1/16) [cos90°=0]=1/16 (proved)
6542.

Prove that cos 20°cos40°.cos60°.cos80°=1÷16

Answer»
6543.

Lim(x^3+1/x+1)X>0

Answer»
6544.

Tan15°+cot15°=1

Answer»
6545.

Cot x =3/4, x lies in third quadrat

Answer»
6546.

if ab+b-a+1=0 find possible integral solution of a and b

Answer»
6547.

Can we get excellent marks in trigonometry in maths.........!!!!!

Answer»
6548.

How can i download the solutions of the book accountancy by dk goel of class 11

Answer»
6549.

What the value of the third quadrant Sine value

Answer» In third quadrant sine is negative\xa0
6550.

If f (x)=2x^2+1 . Find f (1/x) and f (root x)

Answer»