Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

6451.

if 3tanAtanB=1,then prove that 2cos(A+B)=cos(A-B)

Answer» Given: {tex}3\\tan {\\rm{A}}\\tan {\\rm{B}} = 1{/tex}=> {tex}{{3\\sin {\\rm{A}}\\sin {\\rm{B}}} \\over {\\cos {\\rm{A}}\\cos {\\rm{B}}}} = 1{/tex}=> {tex}3\\sin {\\rm{A}}\\sin {\\rm{B}} = \\cos {\\rm{A}}\\cos {\\rm{B}}{/tex}=> {tex}3\\left[ {{1 \\over 2}\\left\\{ {\\cos \\left( {{\\rm{A}} - {\\rm{B}}} \\right) - \\cos \\left( {{\\rm{A}} + {\\rm{B}}} \\right)} \\right\\}} \\right] = {1 \\over 2}\\left[ {\\cos \\left( {{\\rm{A}} - {\\rm{B}}} \\right) + \\cos \\left( {{\\rm{A}} + {\\rm{B}}} \\right)} \\right]{/tex}=> {tex}3\\cos \\left( {{\\rm{A}} - {\\rm{B}}} \\right) - 3\\cos \\left( {{\\rm{A}} + {\\rm{B}}} \\right) = \\cos \\left( {{\\rm{A}} - {\\rm{B}}} \\right) + \\cos \\left( {{\\rm{A}} + {\\rm{B}}} \\right){/tex}=> {tex} - 4\\cos \\left( {{\\rm{A}} + {\\rm{B}}} \\right) = - 2\\cos \\left( {{\\rm{A}} - {\\rm{B}}} \\right){/tex}=> {tex}2\\cos \\left( {{\\rm{A}} + {\\rm{B}}} \\right) = \\cos \\left( {{\\rm{A}} - {\\rm{B}}} \\right){/tex}Hence proved.
6452.

2×4=?

Answer» 8
6453.

What is the importance of studying statistics?Solve the equation. Sin2x + cosx = 0

Answer» Knowledge in statistics provides us\xa0with the necessary tools and conceptual foundations in quantitative reasoning to extract information intelligently from this sea of data.
{tex}\\sin 2x + \\cos x = 0{/tex}=> {tex}\\sin 2x = - \\cos x{/tex}=> {tex}2\\sin x.\\cos x = - \\cos x{/tex}=> {tex}\\sin x = - {1 \\over 2}{/tex}=> {tex}\\sin x = \\sin \\left( {\\pi + {\\pi \\over 6}} \\right){/tex}=> {tex}\\sin x = \\sin {{7\\pi } \\over 6}{/tex}=> {tex}x = {{7\\pi } \\over 6} = {210^ \\circ }{/tex}
6454.

Find domain of1/(x-4)(x-1)

Answer» Ans.\xa0{tex}f(x) = {1\\over (x-4)(x-1)}{/tex}\xa0We need\xa0to find where the\xa0expression\xa0is undefined. These values are not part of the\xa0domain.For the above function, if it is defined then{tex}(x-4)(x-1) \\ne 0 {/tex}=>\xa0{tex}x-4\\ne 0 \\space and\\space x-1\\ne 0 {/tex}{tex}x\\ne 4 \\space and\\space x\\ne 1 {/tex}So Domain of f(x) = R - {1,4}
6455.

Find domain of(x-4)(x-1)?

Answer» {tex}\\left( {x - 4} \\right)\\left( {x - 1} \\right) = {x^2} - 5x + 4{/tex}\xa0is a polynomial.we know that Polynomial is defined for every real x.hence Domain of\xa0{tex}\\left( {x - 4} \\right)\\left( {x - 1} \\right){/tex}=R
6456.

evaluate\xa0{tex}evaluate sigma superscript 13 subscript n=1 i^n + i^n+1) where n belongs to N{/tex}

Answer»
6457.

If\xa0AunionB=AintersectionB then proved A=B

Answer»
6458.

F(x) = x÷1+x²

Answer» X÷1+x*2x^\xa0
6459.

How to find the square root of -7-24i ?

Answer» Ans.\xa0Let\xa0{tex}\\sqrt {-7-24i} = x+yi{/tex}Squaring Both Sides,=> -7-24i = x2 - y2\xa0+ 2xyion comparing, we get=> x2 - y2\xa0= -7 ……(1)and 2xy = -24 ………(2)We know(x2+y2)2\xa0= (x2-y2)2\xa0+ 4x2y2=> (x2+y2)2 = 49 + 576=> (x2+y2)2\xa0= 625=> x2+ y2 = 25 …………(3)solving (2) and (3), We get{tex}x = \\pm 3 \\space \\space \\space and \\space y =\\pm4{/tex}from (2) as product of xy is -ve, so it means x and y are of opposite sign.So, when x = 3, y = -4when x = -3, y = 4Therefore,\xa0{tex}\\sqrt {-7-24i} = \\pm (3-4i){/tex}
6460.

please what is the meaning of general and pricipal solution in trignometry.

Answer»
6461.

Find the term independent of x in the expansion (x/√3)+(√3/2x²)^10\xa0

Answer» {tex}{\\left( {\\sqrt {{x \\over 3}} + {3 \\over {2{x^2}}}} \\right)^{10}}{/tex}{tex}{T_{r + 1}}{ = ^{10}}{C_r}{\\left( {\\sqrt {{x \\over 3}} } \\right)^{10 - r}}{\\left( {{3 \\over {2{x^2}}}} \\right)^r}{/tex}{tex}{ = ^{10}}{C_r}{\\left( x \\right)^{5 - {r \\over 2} - 2r}}{\\left( 3 \\right)^{ - 5 + {r \\over 2} + r}}{\\left( 2 \\right)^{ - r}}{/tex}{tex}{ = ^{10}}{C_r}{\\left( x \\right)^{{{10 - 5r} \\over 2}}}{\\left( 3 \\right)^{{{3r - 10} \\over 2}}}{\\left( 2 \\right)^{ - r}}{/tex}{tex}for\\,independent\\,of\\,x{/tex}{tex}{\\left( x \\right)^{{{10 - 5r} \\over 2}}} = {x^0}{/tex}{tex}{{10 - 5r} \\over 2} = 0{/tex}{tex}10 - 5r = 0{/tex}{tex}r = 2{/tex}{tex}independent\\,term\\,{T_3}{ = ^{10}}{C_2}{\\left( 3 \\right)^{ - 2}}{\\left( 2 \\right)^{ - 2}}{/tex}{tex} = {{10!} \\over {2!8!}} \\times {1 \\over {36}}{/tex}{tex} = {{10 \\times 9} \\over {2 \\times 36}}{/tex}{tex} = {5 \\over 4}{/tex}
6462.

Find Mode-20-2424-2930-3435-3940-44

Answer»
6463.

find the derivative of sin2x

Answer» {tex}let\\,y = \\sin 2x{/tex}{tex}differentiating\\,with\\,respect\\,to\\,x{/tex}{tex}{{dy} \\over {dx}} = {d \\over {dx}}\\left( {\\sin 2x} \\right){/tex}{tex} = \\cos 2x{d \\over {dx}}\\left( {2x} \\right){/tex}{tex} = 2\\cos 2x{/tex}
6464.

Find derivative of function f(x)=sinx/sinx-cosx with respect to x.

Answer» Ans.\xa0{tex}f(x) = {sinx\\over sinx-cosx}{/tex}Using quotient Rule, we get{tex}f\'(x) ={ {(sinx-cosx){d(sinx)\\over dx}- sinx{d(sinx-cosx)\\over dx}}\\over (sinx-cosx)^2}{/tex}{tex}=> { (sinx-cosx)cosx - sinx(cosx-(-sinx)) \\over (sinx-cosx)^2}{/tex}{tex}=> {sinx cosx - cos^2x -sinxcosx -sin^2x\\over (sinx-cosx)^2}{/tex}{tex}=> {- (cos^2x +sin^2x)\\over (sinx-cosx)^2}{/tex}{tex}=> {-1\\over (sinx-cosx)^2}{/tex}
6465.

find limits of limx→infinity (root a+x - root 9/x)\xa0

Answer»
6466.

let f:r-r be a function given by f(x)=x2+2.find f-1(27).

Answer» {tex}let\\,{f^{ - 1}}\\left( {27} \\right) = x{/tex}{tex} \\Rightarrow f\\left( x \\right) = 27{/tex}{tex} \\Rightarrow {x^2} + 2 = 27{/tex}{tex} \\Rightarrow {x^2} = 25{/tex}{tex} \\Rightarrow x = \\pm 5{/tex}{tex}Hence{/tex}{tex}{f^{ - 1}}\\left( {27} \\right) = \\left\\{ { - 5,5} \\right\\}{/tex}
6467.

Tan a=1÷3, tan b=1÷2 prove that sin2(a+b)=1

Answer» sin 2(a + b) = 12 tan(a + b)/{1 - tan2(a + b)} = 12[(tan a + tan b)/(1 - tana.tanb)]/[1 + {(tan a + tan b)/(1 - tana.tanb)}2] = 12{(1/3 + 1/2)/1 - 1/3 x 1/2)]/[1 +{(1/3 + 1/2)/(1 - tan a .tan b)}2] = 12[(5/6)/(5/6)]/[1 + {(5/6)/(5/6)}2] = 12/[1 + 1] = 12/2 = 11 = 1Hence proved.\xa0\xa0
6468.

Tan32+tan13+tan32tan13=1

Answer» tan 32o + tan 13o + tan 32o.tan13o = 1tan 32o + tan 13o = 1 - tan 32o.tan13o(tan 32o + tan 13o)/(1 - tan 32o.tan13o) = 1tan (32o + 13o) = 1 [Since tan (A + B) = (tan A + tan B)/(1 - tan A. tan B)]tan 45o = 11 = 1 [Since tan 45o = 1]Hence proved.
Hello friends,If we can recall the formulatan( A+B)= ( tan A + tan B) /(1- tan A tan B)so let us takeA= 32 and B= 13therefore tan( 32+13) = (tan 32+ tan 13)/(1-tan32\xa0tan13)i.e tan 45 =\xa0(tan 32+ tan 13)/(1-tan32\xa0tan13) \xa0[since 32+13 =45]\xa01=\xa0(tan 32+ tan 13)/(1-tan32\xa0tan13) [tan 45 =1](1-tan32\xa0tan13) =\xa0(tan 32+ tan 13)1= tan32\xa0tan13\xa0+ tan 32+ tan 13PROOVEDThanksS Mukherjee7864927899\xa0
6469.

Sin 780°.Sin120°+Cos240°.Sin390°=1/2

Answer» Ans.\xa0\\(Sin 780°.Sin120°+Cos240°.Sin390°={1\\over 2}\\)Taking LHS\\(Sin 780°.Sin120°+Cos240°.Sin390°\\)=>\xa0\\(Sin( 2\\times 360°+60°).Sin(180°-60°)+Cos(180°+60°).Sin(360°+30°)\\)\\(=> Sin( 4\\pi+60°).Sin(\\pi-60°)+Cos(\\pi+60°).Sin(2\\pi+30°)\\)=>\xa0\\(Sin60°.Sin60°- Cos60°.Sin30°\\)=>\xa0\\({\\sqrt 3\\over 2}.{\\sqrt 3\\over 2} - {1\\over 2}.{1\\over 2} = {3\\over 4} - {1\\over 4} \\)=>\xa0\\({2\\over 4 } = {1\\over 2 } = RHS \\)Hence Proved
6470.

Represent in the form of a + ib.\xa0i3/2

Answer» Ans.\xa0\\(let \\space (a+ib) = i^{3\\over 2}\\)Squaring Both Sides, We get\xa0\\(=> a^2 +b^2.i^2 +2abi = i^3\\)\\(=> a^2 -b^2 +2abi = -i \\space \\space \\space \\space \\space \\space \\space \\space \\space \\space [i^2 = -1]\\)On Comparing Both sides, We get\xa0\\(a^2-b^2 = 0 \\space \\space \\space \\space \\space \\space \\space and \\space \\space \\space \\space \\space \\space 2ab =-1\\)=>\xa0\\(a^2 = b^2 \\space \\space \\space ...(1) \\space \\space \\space \\space \\space and \\space \\space a = {-1\\over 2b} \\space \\space \\space \\space \\space ... (2)\\)Put value of a in (1)=>\xa0\\(({-1\\over 2b})^2 = b^2 => {1\\over 4b^2} = b^2 => {1\\over 4} = b^4 \\)=>\xa0\\(b^2 = {1\\over 2} => b = {1\\over \\sqrt 2}\\)Put value of b in (2), we get\xa0\\(a = {-1\\over 2 \\times {1\\over \\sqrt 2}} => a = {-1\\over \\sqrt2}\\)So=> \\({-1\\over \\sqrt2}+{1\\over \\sqrt 2}i = i^{3\\over 2}\\)\xa0
6471.

Prove that cos4π/8 + cos43π/8 + cos45π/8 + cos4\xa07π/8 = 3/2

Answer» Ans.\xa0\\(cos^4{\\pi \\over 8}+cos^4{3\\pi \\over 8}+cos^4{4\\pi \\over 8}+cos^4{7\\pi \\over 8} ={3\\over 2}\\)Taking LHS,\\(cos^4{\\pi \\over 8}+cos^4{3\\pi \\over 8}+cos^4{4\\pi \\over 8}+cos^4{7\\pi \\over 8}\\)=>\xa0\\(cos^4{\\pi \\over 8}+cos^4{3\\pi \\over 8}+cos^4[{{\\pi} -{3\\pi \\over 8}}]+cos^4[{{\\pi - {\\pi \\over 8}}}]\\)=>\xa0\\(cos^4{\\pi \\over 8}+cos^4{3\\pi \\over 8}+({-cos{3\\pi \\over 8}})^4+({-cos{\\pi \\over 8}})^4\\)=>\xa0\\(2[cos^4{\\pi \\over 8}+cos^4{3\\pi \\over 8}]\\)=>\xa0\\(2[cos^4{\\pi \\over 8}+cos^4({\\pi \\over 2}-{\\pi \\over 8})]\\)=>\xa0\\(2[cos^4{\\pi \\over 8}+sin^4{\\pi \\over 8}]\\)\\(=> 2[(cos^2{\\pi \\over 8}+sin^2{\\pi \\over 8})^2 -2 cos^2{\\pi \\over 8}.sin^2{\\pi \\over 8}]\\)\\(=> 2[(1)^2 -{1\\over 2}(2 cos{\\pi \\over 8}.sin{\\pi \\over 8})^2]\\)\\(=> 2[1 -{1\\over 2}(sin {\\pi \\over 4})^2]\\)\\(=> 2[1 -{1\\over 2}\\times {1\\over 2}]\\)\\(=> 2[1 -{1\\over 4}] => 2 \\times {3\\over 4} = {3\\over 2} = RHS \\)Hence Proved
6472.

Find the range of the function f(x)=1/1-x2

Answer» Ans. To Find Range,\\(Let \\space y = {1 \\over 1-x^2}\\)\\(=> {1-x^2} = {1\\over y} \\)\\(=> x^2 ={1-{1\\over y}}\\)\\(=> x^2 = {y-1\\over y}\\)\\(=> x= {\\sqrt{y-1\\over y}}\\)\\(Now,\\space this \\space is \\space defined \\space for \\space {y-1\\over y} \\geq 0 \\space except \\space y \\neq 0\\)\\(y \\in (-\\infty , 0) \\cup [1, \\infty)\\)So Domain is\xa0\\((-\\infty , 0) \\cup [1, \\infty)\\)\xa0\xa0
6473.

Tan3x - tan2x - Tanx = 0 . Solve the equation

Answer» \xa0It is wrong because we can\'t write tan3x = tan2x + tanx\xa0\xa0The and of this question is\xa0Tan(2x+x) = tan2
tan 3x = tan 2x + tan xtan (2x + x) = tan 2x + tan x(tan 2x + tan x)/(1 - tan 2x.tanx x) = tan 2x + tan x1 - tan 2x.tanx = 1tan 2x. tan x = 0tan 2x = 0 and tan x = 0tan 2x = tan 0o and tan x = tan 0o2x =\xa00o and x = 0ox = 0o and x = 0o
6474.

Sin3x + sin3(2π/3 + x) + sin3(4π/3 + x) = -3/4sin3x

Answer» Ans. we know\\(sin^3x = sinx(sin^2x)\\)\\(=>{ sin x (1-cos2x)\\over2}\\)\\(=> {1\\over 2} [{sin x -sin x cos2x}]\\)\\(=> {1\\over 2} [{ sin x - {1\\over 2} [sin (x+2x) +sin (x-2x)]}]\\)\\(=> {1\\over 2} [{ sin x - {1\\over 2} [sin 3x -sin x}]]\\)\\(=> {1\\over 2}\\times{1\\over 2} [{2 sin x - sin 3x +sin x}]\\)\\(=> {3sin x - sin 3x \\over4}\\) (1)Similarly,\\(=> sin^3({{2\\pi\\over 3} +x})= {3sin ({{2\\pi\\over 3 }+x })- sin (2\\pi +3x )\\over4}\\)\\(=> {3[sin ({{2\\pi\\over 3 })cos x +sin xcos( {2\\pi\\over 3} })]- sin 3x\\over4}\\)\\(=> {3[{\\sqrt3\\over 2}cos x -{1\\over 2}sin x)]- sin 3x\\over4}\\)\\(=> {3\\sqrt3cos x -3sin x- 2sin 3x\\over 8}\\) (2)Similarly,\xa0\\(=> sin^3({{4\\pi\\over 3} +x})= {3sin ({{4\\pi\\over 3 }+x })- sin (4\\pi +3x )\\over4}\\)\\(=> {3[sin ({{4\\pi\\over 3 })cos x +sin xcos( {4\\pi\\over 3} })]- sin 3x\\over4}\\)\\(=> {3[(-{\\sqrt3\\over 2 })cos x +sin x({-1\\over 2})]- sin 3x\\over4}\\)\\(=> {-3\\sqrt3cos x -3sin x-2sin 3x\\over 8}\\) (3)From (1),(2) and (3)\\(=> sin^3{x}+ sin^3({{2\\pi\\over 3} +x}) + sin^3({{4\\pi\\over 3} +x})\\)\\(=>{3sin x - sin3x \\over 4}+ {3\\sqrt3cos x -3sin x- 2sin 3x\\over 8} + {-3\\sqrt3cos x -3sin x- 2sin 3x\\over 8}\\)\\(=>{1\\over 8}[{6sin x - 2sin3x + 3\\sqrt3cos x -3sin x- 2sin 3x -3\\sqrt3cos x -3sin x- 2sin 3x}]\\)\\(=>{1\\over 8}[ {- 6sin 3x}] = {-6\\over 8} {sin 3x} \\)\\(=> {-3\\over 4}{sin 3x} = RHS\\)Hence Proved
6475.

Lim\xa0x tends to 0\xa0(Tanx - sinx )/x3

Answer» Ans.\xa0\\(\\lim_{x \\to 0} {tan x - sin x \\over x^3}\\)=>\xa0\\(\\lim_{x \\to 0} {{sin x\\over cos x} - sin x \\over x^3}\\)=>\xa0\\(\\lim_{x \\to 0} {sin x({1\\over cosx } - 1) \\over x^3}\\)=>\xa0\\(\\lim_{x \\to 0} {sin x(1 - cosx) \\over x^3 . \\space cos x }\\)=>\xa0\\(\\lim_{x \\to 0} {[{1\\over cos x}. {sin x \\over x} .{ 1 - cosx \\over x^2 }}]\\)=>\xa0\\(\\lim_{x \\to 0} {[{1\\over cos x}. {sin x \\over x} .{ 2sin^2{x\\over 2} \\over x^2 }}]\\)=>\xa0\\(2\\lim_{x \\to 0} {[{1\\over cos x}. {sin x \\over x} .{ sin{x\\over 2} \\over x}.{ sin{x\\over 2} \\over x}}]\\)=>\xa0\\(2\\lim_{x \\to 0} {[{1\\over cos x}. {sin x \\over x} .{1\\over 2}{ sin{x\\over 2} \\over {x\\over 2}}.{1\\over 2}{ sin{x\\over 2} \\over {x\\over 2}}}]\\)=>\xa0\\(2[\\lim_{x \\to 0} {{1\\over cos x}\\times \\lim_{x \\to 0}{sin x \\over x} \\times \\lim_{x \\to 0}{1\\over 2}{ sin{x\\over 2} \\over {x\\over 2}}\\times \\lim_{x \\to 0}{1\\over 2}{ sin{x\\over 2} \\over {x\\over 2}}}]\\)=>\xa0\\(2[\\lim_{x \\to 0} {{1\\over cos x}\\times \\lim_{x \\to 0}{sin x \\over x} \\times \\lim_{{x\\over 2} \\to 0}{1\\over 2}{ sin{x\\over 2} \\over {x\\over 2}}\\times \\lim_{{x\\over2} \\to 0}{1\\over 2}{ sin{x\\over 2} \\over {x\\over 2}}}]\\) [as x tends to zero, x/2 also tends to zero]=>\xa0\\(2\\times 1 \\times 1 \\times {1\\over 2}\\times {1\\over 2} = {1\\over 2}\\)
6476.

Derivative of cube root of tanx by first principle

Answer» Ans.\xa0\\(Derivative \\space of \\space \\sqrt [3] {tan x} \\space by \\space First \\space Principle \\space is \\space given \\space by : \\)\\(=> f\'(x) = lim_{h \\to 0} \\space {{ \\sqrt [3]{tan(x+h)} - \\sqrt [3] {tan x}} \\over h}\\)\\(=> lim_{h \\to 0} \\space {{ \\sqrt [3]{sin(x+h)\\over cos(x+h)} - \\sqrt [3] {sinx\\over cosx }} \\over h}\\)\\(=> lim_{h \\to 0} \\space {{ \\sqrt [3]{sin(x+h) cos \\space x} - \\sqrt [3] {sinx \\space cos(x+h) }} \\over h {\\sqrt [3]{cos(x+h) cosx} }}\\)\\(=> lim_{h \\to 0} {1\\over {\\sqrt [3]{cos(x+h) cosx} }} . \\space lim_{h \\to 0} \\space {{ \\sqrt [3]{sin(x+h) cos \\space x} - \\sqrt [3] {sinx \\space cos(x+h) }} \\over h}\\)\\(=> {1\\over {\\sqrt [3]{cos(x+0) cosx} }} . \\space lim_{h \\to 0} \\space {{ \\sqrt [3]{sin(x+h) cos \\space x} - \\sqrt [3] {sinx \\space cos(x+h) }} \\over h}\\)\\(=> {1\\over {\\sqrt [3]{cos^2x } }}.\\space lim_{h \\to 0} \\space {{ \\sqrt [3]{sin(x+h) cos \\space x} - \\sqrt [3] {sinx\\space cos(x+h)}}\\over h} \\times{ {[{(sin(x+h) cos \\space x})^{2\\over 3}}+{({sinx \\space cos(x+h)})^{2\\over3}}+\\sqrt [3]{sin(x+h)cosx. \\space cox(x+h)sinx}]\\over {[{(sin(x+h) cos \\space x})^{2\\over 3}}+{({sinx \\space cos(x+h)})^{2\\over3}}+ \\sqrt [3]{sin(x+h)cosx. \\space cox(x+h)sinx}]}\\)\\(\\)\\(=> {1\\over {\\sqrt [3]{cos^2x } }}.\\space lim_{h \\to 0}{ \\space {{sin(x+h) cos \\space x - sinx\\space cos(x+h)}} \\over {h [{(sin(x+h) cos \\space x})^{2\\over 3}+({sinx \\space cos(x+h)})^{2\\over3}+ \\sqrt [3]{sin(x+h)cosx. \\space cox(x+h)sinx}}]}\\)\\([a^3-b^3 = (a-b)(a^2+b^2+ab)]\\)\\(=> {1\\over {\\sqrt [3]{cos^2x } }}.\\space lim_{h \\to 0}{ \\space {{sin(x+h -x )}} \\over {h [{(sin(x+h) cos \\space x})^{2\\over 3}+({sinx \\space cos(x+h)})^{2\\over3}+ \\sqrt [3]{sin(x+h)cosx. \\space cox(x+h)sinx}}]}\\)\\([sin (a-b) = sina.cosb - cos a. sin b ]\\)\\(=> {1\\over {\\sqrt [3]{cos^2x } }}.\\space lim_{h \\to 0}{ \\space {{sinh }} \\over h} . \\space lim_{h \\to 0}{ { 1\\over [{(sin(x+h) cos \\space x})^{2\\over 3}+({sinx \\space cos(x+h)})^{2\\over3}+ \\sqrt [3]{sin(x+h)cosx. \\space cox(x+h)sinx}]}}\\)\\(=> {1\\over cos^{2\\over3}x} . 1. {1\\over[(sin(x+0) cos \\space x)^{2\\over 3}+(sinx \\space cos(x+0))^{2\\over3}+ \\sqrt [3]{sin(x+0)cosx. \\space cox(x+0)sinx}]}\\)\\(=> {1\\over cos^{2\\over3}x} . 1. {1\\over[(sinx cos \\space x)^{2\\over 3}+(sinx \\space cosx)^{2\\over3}+ \\sqrt [3]{sinx.cosx. \\space cosx .sinx}]}\\)\\(=> {1\\over cos^{2\\over3}x} . 1. {1\\over[(sinx cos \\space x)^{2\\over 3}+(sinx \\space cosx)^{2\\over3}+ ({sinxcosx})^{2\\over3}]}\\)\\(=> {1\\over cos^{2\\over3}x} . {1\\over3(sinx cos \\space x)^{2\\over 3}}\\)\\(=> {1\\over 3}{1\\over cos^{4\\over3}x. sin^{2\\over 3}x}\\)\\(=> {1\\over 3}{{1\\over cos^2x}\\over ({ cos^{4\\over3}x. sin^{2\\over 3}x\\over cos^2x})}\\)\\(=> {1\\over 3}{{sec^2x}\\over ({ sin^{2\\over 3}x\\over cos^{2\\over 3}x})}\\)\\(=> {1\\over 3}.{1\\over { tan^{2\\over 3}x}}.{sec^2x}\\)
6477.

4tanx(1-tan2x)/1-6tan2x+tan4x

Answer» The question is : Prove that tan 4x=\xa04 tanx(1-tan2x)/1-6tan2x+tan4x\xa0L.H.S.tan 4x = tan 2(2x)[We know that tan 2x = 2 tan x / 1 - tan\xa02\xa0x]= 2 tan 2x / 1 - tan2\xa0(2x)[now putting tan 2x = 2 tan x / 1 - tan2x]= 2[2 tan x/1-tan2x] / 1 - [2 tan x / 1 - tan2x]\xa02=[4 tan x / 1 - tan\xa02\xa0x] / [1 - 4 tan\xa02\xa0x / (1 - tan2\xa0x)2]=[4 tan x / 1 - tan\xa02\xa0x] / [ (1- tan\xa02\xa0x)2\xa0- 4 tan\xa02\xa0x / (1 - tan2\xa0x)2]= 4 tan x (1 - tan\xa02\xa0x) / (1- tan\xa02\xa0x)2\xa0- 4 tan\xa02\xa0x= 4 tan x (1 - tan\xa02\xa0x) / 1 - 2 tan2\xa0x +tan\xa04\xa0x - 4tan2\xa0x= 4 tan x (1 - tan\xa02\xa0x) / 1 - 6 tan\xa02\xa0x + tan\xa04\xa0x
6478.

if |z|=1,z not equal to 1, then find re(z-1/z+1)pls reply

Answer»
6479.

sin5x-2sin3x+sinx/cos5x-cosx=tanx

Answer» sin5x + sinx = 2sin3x cos2x\xa0cos5x - cosx = -2sin3x sin2x ..... use factorisation formulae of trigonometry.\xa0So the fraction is 2sin3x(cos2x-1)/ - 2sin3xsin2x\xa0= (1- cos2x)/sin2x\xa0= 2(sin2x)/ 2sinxcosx\xa0=sinx/cosx\xa0=tanx.
6480.

Find dy/dx of log. Log sin x½

Answer» Ans. If question is: log (log sin x1/2)then according to\xa0Chain rule\\({dy\\over dx} = { 1\\over log( sin x^{1\\over 2})} \\times { 1 \\over sin (x)^{1\\over2}} \\times cos (x)^{1\\over 2}\\times {1\\over2\\sqrt x}\\)
6481.

Find dy/dx yx\xa0= xy

Answer» Ans. yx\xa0= xyTake log both side, we get\xa0log yx\xa0= log xy=> x log y = y log xdifferentiate w.r.t x, we get=>\xa0\\(x {1\\over y} {dy \\over dx} + log y = y {1\\over x} + log x {dy \\over dx}\\)=>\xa0\\( {x\\over y} {dy \\over dx} - log x {dy \\over dx} = {y\\over x} - log y\\)=>\xa0\\(( {{x\\over y} - log x} ) {dy \\over dx} = {y\\over x} - log y\\)=>\xa0\\( {dy \\over dx} = { ( { {y\\over x} - log y } ) \\over ( {{x\\over y} - log x} )}\\)\xa0
6482.

Find Sum of : -\xa0 8 + 88 + 888 + 8888 +.............upto n number of terms.

Answer» Ans. Sn\xa0= 8( 1 + 11 + 111 + 1111 + ..... Upto n terms )=> 8/9 (9\xa0+ 99 + 999 + 9999 + ……… upto n terms)=> 8/9 [ (10-1) + (100-1) + (1000-1) + upto n terms]=> 8/9 [ (10 + 100 + 1000 + ...... n terms ) -(1+ 1 + 1 + ………… n terms)]=> 8/9 [ 10(10n\xa0-1)/ (10-1) - n ]=> 8/9 [ 10(10n-1)/9 - n]=> 80(10n\xa0-1) /81 - 8n/9
6483.

find derivative of sin x.

Answer» cos x is the derivative of sin x\xa0
6484.

find derivative of sin x by first principle.\xa0

Answer» The derivative of sin(x) from first principles.Setting aside the limit for now, our first step is to evaluate the fraction with\xa0f(x) = sin\xa0x.On the right hand side we have a difference of 2 sines, so we apply the formula in (A2) above:Simplifying the right hand side gives:Now to put it all together and consider the limit:We make use of (3), fraction on a fraction, to bring that 2 out front down to the bottom:Now, the limit of a product is the product of the limits, so we can write this as:\xa0Now, the first limit is in the form of\xa0Limit of sin θ/θ\xa0that we met in (A1) above.We know it has value 1.For the right hand limit, we simply obtain cos\xa0x.So we can conclude that
6485.

if the sum of n terms of an A.P. is 3n2\xa0+ 5n and its mth\xa0 term is 164, find the value of m

Answer» It is given that sum of n terms of an A.P. is 3n2\xa0+ 5n=> S1\xa0= 3(1)2\xa0+ 5(1) = 3 + 5 = 8 which will also be 1st term as "a1".Further, S2\xa0\xa0= 3 (2)2\xa0+ 5 (2) = 12 + 10 = 22And, we know, a2\xa0=\xa0S2\xa0-\xa0S1\xa0= 22 - 8 = 14....\xa0So, d =\xa0a2\xa0- a1\xa0= 14 - 8 = 6Now, it\'s given that am\xa0= 164 =>\xa0a1\xa0+ (m - 1)d = 1648 +\xa0(m - 1)×6 = 164 =>\xa0(m - 1)×6 = 156\xa0=>\xa0(m - 1) = 26\xa0=> m = 27 (Answer)\xa0
According to question,S1 = a = 3(1)2 + 5 x 1 = 8S2 =\xa03(2)2 + 5 x\xa02 = 22 Then, a2 = S2 - S1 = 22 - 8 = 14S3 =\xa03(3)2 + 5 x\xa03 =\xa042 Then, a3 = S3 - S2 =\xa042 -\xa022 = 22Therefore, d = 14 - 8 = 6Now, am = a + (m - 1)d = 164=> 164 = 8 + (m - 1)6=> 156 = (m - 1)6=> 26 = m - 1=> m = 27
6486.

The coefficient of 5th,6th,7th term are in the a.p in the expansion of (1+x)power n.\xa0

Answer» In the expension of (1+X)n, T(r+1)\xa0=\xa0nCr\xa0XrCofficient of (r+1)th term = nCrSo Cofficient of 5th, 6th and 7th term ll be\xa0nC4\xa0nC5\xa0nC6 respectivily\xa0As it is given these terms are in APSo, 2 * (\xa0nC5 ) =\xa0nC4\xa0+\xa0nC6(2 * n! ) / { (n-5)! 5!} = (n! ) / { (n-4)! 4!} + (n! ) / { (n-6)! 6!}i think you can proceed from here .\xa0\xa0
6487.

If 23\xa0+43+63+............+(2n)3\xa0=kn2(n+1)2, then k=?

Answer» The sum of cubes of even numbers is equal to 2 n^2 (n+1)^2So 2^3+ 4^3+ 6^3 +........+2n^2 = 2n^2(n+1)^2\xa02 n^2 (n+1)^2 = k n^2 (n+1) ^2Cancelling the common terms, we get\xa0k=2
6488.

if a,b,c are in a.p b,c,d are in gp and 1/c,1/d,1/e are in a.p prove that a,c,e are in g.p.\xa0

Answer» Given: b = (a + b)/2. ........(i)And. c2\xa0= bd ..........(ii)And. d = 2ce/(c + e). ..........(iii)Substituting values of b and d from eq.(i) and (iii), in eq.(ii),c2\xa0= {(a + c)/2} × {2ce/(c + e)}c2\xa0= (ace + c2e)/(c + e)c3\xa0= acec2 = ae
6489.

if g is the geometric mean b/w a and b show that 1/g+a,+ 1/g+b=1/g.

Answer» L.H.S. = [1/(ab)1/2+a] + [1/(ab)1/2+b] = [1/a1/2(a1/2 + b1/2)] + [1/b1/2(a1/2 + b1/2)] = (a1/2 + b1/2)/(ab)1/2(a1/2 + b1/2) = 1/(ab)1/2 = 1/g = R.H.S.
6490.

Cos(3π/4+x)-cos(3π/4-x)=-√2sinx

Answer» L.H.S. = Cos(3π/4+x)-cos(3π/4-x)= cos 3π/4 cos x - sin 3π/4 sin x - [cos 3π/4 cos x\xa0+ sin 3π/4 sin x]= cos 3π/4 cos x - sin 3π/4 sin x - cos 3π/4 cos x\xa0- sin 3π/4 sin x]= -2sin 3π/4 sin x= -2 x (1/√2) sin x= -√2sin x
6491.

If ( x + iy ) ( 3 – 4i ) = (5 + 12i ) , then root of(x2\xa0+ y2) =??\xa0

Answer» Given: ( x + iy ) ( 3 – 4i ) = (5 + 12i )Solution:( x + iy ) =\xa0(5 + 12i ) /\xa0( 3 – 4i )By Rationalization,\xa0( x + iy ) =\xa0(5 + 12i ) /\xa0( 3 – 4i ) ×\xa0( 3 +\xa04i )/\xa0( 3 +\xa04i )=\xa0(5 + 12i )\xa0( 3 +\xa04i )\xa0/\xa0( 3 +\xa04i )\xa0( 3 -\xa04i )= (15 + 36i + 20i +\xa048i2)\xa0/\xa03^2 - (4i)2 {( 3 +\xa04i )\xa0( 3 -\xa04i )\xa0=\xa032 - (4i)2 because (a+b)(a-b)=a2 - b2}= (15 - 48 + 56i)\xa0/\xa09 - 16i2 (48i^2 = -48 because i2 = -1)= ( -33 + 56i)\xa0/\xa09 +16= ( -33 + 56i)\xa0/\xa025So, ( x + iy ) = -33/25\xa0+ 56i/25\xa0And, ( x -\xa0iy ) = -33/25 -\xa056i/25\xa0Now,\xa0( x + iy )( x -\xa0iy ) = (-33/25\xa0+ 56i/25 )\xa0(-33/25 -\xa056i/25 )x2\xa0+ y2\xa0=\xa0(-33/25)2\xa0- (56i/25)2= 1089/625 - 3136 i2/\xa0625= 1089/625 +\xa03136 /\xa0625= 4225\xa0/\xa0625 = 6.76Now Root of\xa0x2\xa0+ y2\xa0means root of\xa06.76 = 2.6 (Answer)
6492.

What is binomial theorem

Answer» The Binomial Theorem is a quick way (okay, it\'s a less slow way) of expanding (or multiplying out) a binomial expression that has been raised to some (generally inconveniently large) power.
6493.

Write the general term of the following series13/1 + 13+23/1+3,......\xa0

Answer»
6494.

Write the middle term in the expension of (x2\xa0- yx)12\xa0.\xa0

Answer» total number of terms in expansion = (power of expression +1)so in this expension total number of terms ll be 13 and middle term ll be 7th termT7\xa0=\xa012C6\xa0({x)2}6\xa0(yx)6\xa0
6495.

What is dx of sin x/2cos^2x.

Answer» dx = sin x / 2cos2x = 1/2[sin x - sec2x] [By Product rule]dx = 1/2[sin x.2sec x.sec x.tan x + sec2x.cos x]dx = 1/2[sin x.2sec2x.tan x + sec x]dx = (1/2) sec x[2sin2x.sec2x + 1] = (1/2) sec x[2tan2x + 1] = 1/(2cos x) [(2sin2x/cos2x) + 1]dx = 1/(2cos3 x) [2sin2x + 1 - sin2x\xa0] = 1/(2cos3 x) [sin2x + 1]
6496.

Find the domain and range of the function f(x)=(x2+2x+1)/(x2-8x+12)

Answer» Ans. f(x) = (x2+2x+1)/(x2-8x+12)To find domain as the function is rational so its denominator must not be equal to zero(0).x2-8x+12\xa0= 0=> x2-6x-2x+12=0=> x(x-6)-2(x-6)=0=> (x-6)(x-2)=0=> x = 2,6For these two values this function \'ll become undefined. So domain = R - {2,6}To Find Range:Let f(x)=y=> (x2+2x+1)/(x2-8x+12) = y=> x2+2x+1 = yx2+-8xy+12y=> yx2-8xy +12y -x2-2x-1\xa0=0\xa0=> (y-1)x2\xa0-(8y+2)x\xa0+(12y-1) = 0Now D\xa0≥ 0=> b2\xa0-4ac\xa0≥\xa00=> (8y+2)2\xa0- 4(y-1)(12y-1)\xa0≥ 0\xa0= (8y+2)2\xa0≥\xa04(12y2\xa0-13y +1)=> 64y2\xa0+ 4 + 32y\xa0≥ 48y2\xa0-52y +4=> 16y2\xa0+ 84y\xa0≥ 0divide by 4=> 4y2\xa0+ 21y\xa0≥ 0=> y(4y+21)\xa0≥ 0=> y\xa0≥ 0 and\xa04y +21\xa0≥ 0y\xa0≥ 0 and y\xa0≥ -21/4So domain = R - (-21/4, 0)
6497.

Prove 2tanx - cotx = -1

Answer» 2tan x - cot x + 1 = 02tan x - 1/tan x + 1 = 02tan2x - 1 + tan x = 02tan2x + tan x - 1 = 02tan2x + 2tan x - tan x - 1 = 02tan x(tan x + 1) - 1 (tan x + 1) = 0(tan x + 1)(2tan x - 1) = 0tan x + 1 = 0 or 2tan x - 1 = 0tan x = -1 or tan x = 1/2x = 3π/4, 7π/4 or x = 3.6052, 0.4636
6498.

I also wants to know the explanation of wrong answer in practice test\xa0

Answer» In that case,\xa0post the question along with your answer and we will give the correct explanation for your wrong answers.!\xa0
6499.

How 0×infinity =1 ???\xa0

Answer» Ans.\xa0Infinity\xa0multiplied by\xa0zero\xa0is UNDEFINED. It is one of the 7 indeterminate forms in limits.
6500.

how to find domain and range

Answer» Domain: If f : X →Y is a function, then the set X is called the Domain and Y is called the co-domain of the function f. Example: Find domain of the function fx\xa0=\xa01x-5 The given function is not defined at x = 5. Therefore, Domain of the given function is R - {5}, where R is set of all real numbers.Range: The set of second elements of the ordered pairs defining a function is called the Range of the function. Example: Find the range of function fx\xa0=\xa01x-5 Now, y=\xa01x-5⇒\xa0\xa0\xa0\xa0\xa0\xa01y=x-5⇒\xa0\xa0\xa0\xa0\xa0\xa0x\xa0=\xa05y+1y Clearly, x is not defined when y = 0. Therefore, Range of given funciton is R - {0}.