Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 6351. |
Start with b and ends with t how many words are there? |
| Answer» | |
| 6352. |
Find n if. -: (n+2)! (2n+1)! / (2n-1)! (n+3)! 72/7 |
| Answer» | |
| 6353. |
22x22 |
| Answer» | |
| 6354. |
Find n if-: n!/2!(n-2)! : n!/4!(n-4)! |
| Answer» n=2 or n=3 | |
| 6355. |
Show that-: n!(n+2)=n!+(n+1)! |
| Answer» R.H.S=n!+(n+1)! =n! +(n+1)n! =n! [1+(n+1)] =n! [1+n+1] =n! (n+2) R.H.S=L. H. S | |
| 6356. |
Prove that Cos^2y-cos^2x =sin (x+y)sin (x-y) |
| Answer» | |
| 6357. |
X≥3 |
| Answer» | |
| 6358. |
(√3 +√2) ^6 - (√3-√2) ^6 |
| Answer» | |
| 6359. |
domain |
| Answer» | |
| 6360. |
In how many ways can 9examination paper be arranged so that the best and worst never come together |
| Answer» | |
| 6361. |
How to find the value of inverse trigonometric values such as tan-1 |
| Answer» U can find this on net....and in examination u will have the value in last of the question..after ? In (tan -1= ....) | |
| 6362. |
Solve x(2)+2=0 |
| Answer» x(2) +2=02x+2=02x= -2x= -2/2x = -1 Ans. x= -1 | |
| 6363. |
Find the value of sin x/2 and if value of sin X is 1/4. |
| Answer» Is anwer is 1/6...? | |
| 6364. |
Value of tan 18 |
| Answer» 0.32492 | |
| 6365. |
√3cosec20 - sec20 |
| Answer» | |
| 6366. |
Tan13pi/12 |
| Answer» | |
| 6367. |
n!/(n-r)! (1): n=6,r=2 |
| Answer» | |
| 6368. |
Cos square 45°sin square15°=squareroot 3/2 |
| Answer» | |
| 6369. |
how to learn identities of trignometry |
| Answer» By writing them daily atleast 3 times | |
| 6370. |
In an isosceles trapezium ABCD ,if AB is parallel to CD ,show that angle ADC+ angle ABC =180° |
| Answer» | |
| 6371. |
Lim [x³-4x²+4x]X->2 |
| Answer» | |
| 6372. |
2!+3! |
| Answer» 2*1+3*2*1=8 | |
| 6373. |
In a triangle ABC, tanA/2 = 5/6, tanB/2 = 20/37, then tanC/2 is equal to what? |
| Answer» | |
| 6374. |
S a huge d |
| Answer» | |
| 6375. |
How put k+1 in pmi |
| Answer» | |
| 6376. |
|x-1|+|x-2|>=4 |
| Answer» | |
| 6377. |
Formula for centroid of triangle |
| Answer» | |
| 6378. |
Rules for integrarion |
| Answer» | |
| 6379. |
What is standard position of an angle |
| Answer» | |
| 6380. |
What is dot |
| Answer» | |
| 6381. |
Locus andits equation |
| Answer» | |
| 6382. |
Subset mean |
| Answer» A set B is said to be a subset of set A if every elements of B are in set A.for example:- let A={1,2,3}\xa0then B= {1,2} is subset of set A as every element of B i.e.1 and 2 is also element of set A.Similarly C={1} is also a subset of set A as element of C i.e.1 is in set A. | |
| 6383. |
a+ |
| Answer» | |
| 6384. |
1+2+3+-------+n=n(n+1)DIVIDED BY 2 |
| Answer» | |
| 6385. |
What is a subset |
| Answer» "A" is considered to be a subset of ,"B" if all the elements of A is in present in B.Eg:A= {1,2,3,4}B={2,3}In the above case, B is considered to be a subset of A | |
| 6386. |
If A={1,3,5,7,11} then what is the power set of A |
| Answer» The set of all the subset Of A is the powerset of A | |
| 6387. |
Tan70=tan20+2tan50 |
| Answer» | |
| 6388. |
Area is scalar or vector quantity.Give example |
| Answer» Area is a scalar quantiti..because there ia no need of dimension to define area.. | |
| 6389. |
Write in set builder form{1,-1,i,-i} |
| Answer» Set builder form of {1,-1,i,-i} isA={x: x is the solution of eqaution (x2\xa0-1)(x2\xa0+1)=0} ={x: x is the solution of equation x4\xa0- 1=0} [by using identity (a-b)(a+b)=a2\xa0- b2] | |
| 6390. |
if A={-1,1},find A×A×A |
| Answer» A={-1,1}A×A={-1,1}×{-1,1} = {(-1,-1),(-1,1),(1,-1),(1,1)}Now A×A×A={(-1,-1),(-1,1),(1,-1),(1,1)}×{-1,1} = {(-1,-1,-1),(-1,-1,1),(-1,1,-1),(-1,1,1),(1,-1,-1),(1,-1,1),(1,1,-1),(1,1,1)} | |
| 6391. |
1+11+111+1111+11111+111111 |
| Answer» 123456 | |
| 6392. |
If two complex number z1 and z2 are such that |z1|=|z2| is then necessary that z1=z2 |
| Answer» No, its not necessary.For example:- let z1= 3+4i and z2= 4+3iThen |z1| ={tex}{\\sqrt {3^2 +4^2}}={\\sqrt {9+16}}={\\sqrt {25}}=5{/tex}Also |z2| ={tex}{\\sqrt {4^2+3^2}}={\\sqrt {16+9}}={\\sqrt {25}}=5{/tex}So clearly |z1| = |z2| =5But z1\xa0done not equal to z2\xa0as real part\xa0and imaginary part\xa0of z1\xa0is not equal to real part\xa0and imaginary part\xa0of z2 | |
| 6393. |
Find √i+√-i |
| Answer» Solve:\xa0{tex} √i+√(-i){/tex}{tex}=√(e^(i π/2) )+√(〖-e〗^(i π/2) ){/tex}{tex}=〖e〗^(i π/4)+ie^(i π/4){/tex}{tex}=〖e〗^(i π/4) (1+i){/tex}{tex}=〖e〗^(i π/4) (√2 e^(i π/4)){/tex}{tex}=√2 e^(i π/2){/tex}{tex}=i√2{/tex} | |
| 6394. |
Find the value of tan1°tan2°tan3........tan89°. |
| Answer» tan1°tan2°tan3°.........tan89°=tan(90°-89°)tan(90°-88°)tan(90°-87°)...............tan(90°-46°)tan45°tan46°.....tan89° = cot89°cot88°cot87°..........cot46°tan45°tan46°......tan89° [by using identity tan(90°-A)= cotA] ={tex}1\\over tan89°{/tex}×{tex}1\\over tan88°{/tex}×.........{tex}1\\over tan46°{/tex}×tan45°×tan46°×......tan88°×tan89° = tan45° =1 | |
| 6395. |
How Rutherford knew that Alfa particles returned opposite direction? |
| Answer» With teh help of analyser\xa0 | |
| 6396. |
|x-2|-|x-6| |
| Answer» 4 | |
| 6397. |
Find the value of sin16 |
| Answer» | |
| 6398. |
Find value of cos (-1710°) |
|
Answer» = -cos (1710)°=-cos (180*10-90)°= -cos (-90)°= cos (90)°= 0 5×360°-90° {360-Q}Cos90°{cos90°=0}0 Cos(1800+(-1710))Cos (90)0 |
|
| 6399. |
Draw Venn diagram of A\'UB |
| Answer» | |
| 6400. |
If |z+4| is greater than equal to 3,then maximum value of |z+1| is |
| Answer» | |