1.

Find derivative of function f(x)=sinx/sinx-cosx with respect to x.

Answer» Ans.\xa0{tex}f(x) = {sinx\\over sinx-cosx}{/tex}Using quotient Rule, we get{tex}f\'(x) ={ {(sinx-cosx){d(sinx)\\over dx}- sinx{d(sinx-cosx)\\over dx}}\\over (sinx-cosx)^2}{/tex}{tex}=> { (sinx-cosx)cosx - sinx(cosx-(-sinx)) \\over (sinx-cosx)^2}{/tex}{tex}=> {sinx cosx - cos^2x -sinxcosx -sin^2x\\over (sinx-cosx)^2}{/tex}{tex}=> {- (cos^2x +sin^2x)\\over (sinx-cosx)^2}{/tex}{tex}=> {-1\\over (sinx-cosx)^2}{/tex}


Discussion

No Comment Found