Saved Bookmarks
| 1. |
(1+cotA+tanA)(sinA-cosA)=secA/cosec2A-cosecA/sec2A\xa0 |
|
Answer» I can\'t understand L.H.S.{tex}\\left( {1 + \\cot {\\rm{A}} + \\tan {\\rm{A}}} \\right)\\left( {\\sin {\\rm{A}} - \\cos {\\rm{A}}} \\right){/tex}= {tex}\\left( {1 + {{\\cos {\\rm{A}}} \\over {\\sin {\\rm{A}}}} + {{\\sin {\\rm{A}}} \\over {\\cos {\\rm{A}}}}} \\right)\\left( {\\sin {\\rm{A}} - \\cos {\\rm{A}}} \\right){/tex}= {tex}{{\\left( {\\sin {\\rm{A}} - \\cos {\\rm{A}}} \\right)\\left( {\\sin {\\rm{AcosA}} + {{\\sin }^2}{\\rm{A}} + {{\\cos }^2}{\\rm{A}}} \\right)} \\over {\\sin {\\rm{AcosA}}}}{/tex}= {tex}{{{{\\sin }^3}{\\rm{A}} - {{\\cos }^3}{\\rm{A}}} \\over {\\sin {\\rm{AcosA}}}}{/tex}= {tex}{{{{\\sin }^2}{\\rm{A}}} \\over {{\\rm{cosA}}}} - {{{{\\cos }^2}{\\rm{A}}} \\over {\\sin {\\rm{A}}}}{/tex}= {tex}{1 \\over {{\\rm{cosA}}}}.{{{{\\sin }^2}{\\rm{A}}} \\over 1} - {1 \\over {{\\rm{sinA}}}}.{{{{\\cos }^2}{\\rm{A}}} \\over 1}{/tex}= {tex}{{\\sec {\\rm{A}}} \\over {\\cos e{c^2}{\\rm{A}}}} - {{\\cos ec{\\rm{A}}} \\over {{{\\sec }^2}{\\rm{A}}}}{/tex}= R.H.S. |
|