Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

201.

If f(x) = (x – a)2 (x – b)2, find f(a + b).

Answer»

Given as

F(x) = (x – a)2(x – b)2

Let us find the f(a + b).

Now, we have

f (a + b) = (a + b – a)(a + b – b)2

f (a + b) = (b)2 (a)2

∴ f (a + b) = a2b2

202.

If f (x) = 1/(1 – x), show that f [f {f (x)}] = x.

Answer»

Given as

f (x) = 1 / (1 – x)

Let us prove that the f [f {f (x)}] = x.

Firstly, let us solve for the f {f (x)}.

f {f (x)} = f {1/(1 – x)}

= 1/1 – (1/(1 – x))
= 1/[(1 – x – 1)/(1 – x)]

= 1/(-x/(1 – x))

= (1 – x)/-x

= (x – 1)/x

∴ f {f (x)} = (x – 1)/x

Then, we shall solve for the f [f {f (x)}]

f [f {f (x)}] = f [(x-1)/x]
= 1/[1 – (x-1)/x]

= 1/[(x – (x-1))/x]

= 1/[(x – x + 1)/x]

= 1/(1/x)

∴ f [f {f (x)}] = x

Thus proved.

203.

If y = f (x) = (ax – b) / (bx – a), show that x = f (y).

Answer»

Given as

y = f (x) = (ax – b) / (bx – a) ⇒ f (y) = (ay – b) / (by – a)

Let us prove that the x = f (y).

Now, we have,

y = (ax – b) / (bx – a)

On cross-multiplying,

y(bx – a) = ax – b

bxy – ay = ax – b

bxy – ax = ay – b

x(by – a) = ay – b

x = (ay – b) / (by – a) = f (y)

∴ x = f (y)

Thus proved.

204.

Find composite of f and g:f = {(1, 1), (2, 4), (3, 4), (4, 3)} g = {(1, 1), (3, 27), (4, 64)}

Answer»

f = {(1, 1), (2, 4), (3, 4), (4, 3)}

g = {(1, 1), (3, 27), (4, 64)}

f(1) = 1, g(1) = 1

f(2) = 4, g(3) = 27

f(3) = 4, g(4) = 64

f(4) = 3

(gof) (x) = g(f(x))

(gof) (1) = g(f(1)) = g(1) = 1

(gof) (2) = g(f(2)) = g(4) = 64

(gof) (3) = g(f(3)) = g(4) = 64

(gof) (4) = g(f(4)) = g(3) = 27

∴ gof = {(1, 1), (2, 64), (3, 64), (4, 27)}

205.

If f (x) = sin2 x and the composite function g(f (x) = |sin x|, then function g (x) is equal to(a) \(\sqrt{x-1}\)(b) \(\sqrt{x}\)(c) \(\sqrt{x+1}\)(d) – \(\sqrt{x}\)

Answer»

Answer : (b) \(\sqrt{x}\)

Given f (x) = sin2 x and g(f (x)) = | sin x | 

⇒ g(sin2x) = | sin x | 

⇒ g(sin2 x) = \(\sqrt{sin^2 x}\) 

∴  g (x) = \(\sqrt{x}\)

206.

The composite mapping fog of the maps `f:R to R , f(x)=sin x and g:R to R, g(x)=x^(2)`, isA. `x^(2) sin x`B. `(sin x)^(2)`C. `sin x^(2)`D. `(sin x)/(x^(2))`

Answer» Correct Answer - C
207.

`f(x)=(1-x)/(1+x),x=-1` then `f^(-1)(x)` relation toA. f(x)B. `(1)/(f(x))`C. `-f(x)`D. `-(1)/(f(x))`

Answer» Correct Answer - A
Replacing f(x) by x and by `f^(-1) (x) "in "f(x)=(1-x)/(1+x)` we get
`x=(1-f^(-1)(x))/(1+f^(-1)(x))Rightarrow(x+1)/(x-1)=(2)/(-2f^(-1)(x))`
`f^(-1)(x)=(1-x)/(1+x)=f(x)`
208.

If f(x) = 3x4 – 5x2 + 7, find f(x – 1).

Answer»

f(x) = 3x4 – 5x2 + 7

∴ f(x – 1) = 3(x – 1)4 – 5(x – 1)2 + 7

= 3(x44C1 x3 + 4C2 x24C3 x + 4C4 ) – 5(x2 – 2x + 1) + 7

= 3(x4 – 4x3 + 6x2 – 4x + 1) – 5(x2 – 2x + 1) + 7

= 3x4 – 12x3 + 18x2 – 12x + 3 – 5x2 + 10x – 5 + 7

= 3x4 – 12x3 + 13x2 – 2x + 5

209.

If f(x) = 3x + a and f(1) = 7, find a and f(4).

Answer»

f(x) = 3x + a, f(1) = 7

∴ 3(1) + a = 7

∴ a = 7 – 3 = 4

∴ f(x) = 3x + 4

∴ f(4) = 3(4) + 4 = 12 + 4 = 16

210.

Let `f:[4,oo)to[4,oo)` be defined by `f(x)=5^(x^((x-4)))`.Then `f^(-1)(x)` isA. `2-sqrt(4-logs x)`B. `2+sqrt(4+logs x)`C. `((1)/5)^(x^(x+4))`D. not defined

Answer» Correct Answer - B
Clearly, `f:[4,oo)to[4,oo)` is a bijection. So, its is invertible.
f(x)=y, Then
`5^(x^(x-4))=y`
`Rightarrowx^(2)-4x=log_(5)y`
`Rightarrow x^(2)-4x-log_(5)y=0`
`Rightarrow x=(4pmsqrt16+4log_(5)y)/(2)`
`Rightarrow f^(-1)(y)=2+sqrt(4+log_(5)y)`
`Rightarrow f^(-1)(y)=2+sqrt(4+log_(5)y) " "[thereforex ge 4]`
Hence, `f^(-1)(x)=2+sqrt(4+log_(5)x)`
We know that if (g) x is inverse of a bijection f(x) then
`fog(x)=x Rightarrowf(g(x))=x`
This relation suggests the following method for finding the inverset of a bijection.
211.

Find the domain of the following functions.f(x) = \(\sqrt{x-x^2} + \sqrt {5-x}\)fx = √x-x2 + √5-x

Answer»

 f(x) = \(\sqrt{x-x^2} + \sqrt {5-x}\)

x – x2 ≥ 0 

∴ x2 – x ≤ 0 

∴ x(x – 1) ≤ 0 

∴ 0 ≤ x ≤ 1 …..(i) 

5 – x ≥ 0 

∴ x ≤ 5 …..(ii) 

Intersection of intervals given in (i) and (ii) 

gives 

Solution set = [0, 1] 

∴ Domain of f = [0, 1]

212.

If `f:RtoR` is given by `f(x)=3x-5` then `f^-1(x)`A. is given by `(1)/(3x-5)`B. is given by `(x+5)/(3)`C. does not exist because f is not one-oneD. does not exist because is not onto

Answer» Correct Answer - B
Clearly, `f: R to R` is a one-one onto function, So, it is invertible.
Let f(x)=y. Then,
`3x-5=y Rightarrow x=(y+5)/(3) Rightarrow f^(-1)(y)=(y+5)/(3)`
Hence, `f^(-1)(x)=(x+5)/(3)`
213.

If `f(x)=sin^2x` and the composite functions `g{f(x)}=|sinx|,` then the function `g(x)=`A. `sqrt(x-1)`B. `sqrtx`C. `sqrt(x+1)`D. `-sqrtx`

Answer» Correct Answer - B
We have `f(x)=sin^(2) x and g (f(x))=|sinx|`
Now, `g (f(x))=sinx|`
`Rightarrowg (f(x))=sqrt(sin^(2)x)Rightarrowg(sin^(2)x)=sqrt(sin^(2)x)`
`therefore g(x)=sqrtx)`
214.

If g(x) = `x^2+x-2`and `1/2g(f(x)) = 2x^2 -5x+2`, then f(x) isA. 2x-3B. 2x+3C. `2x^(2)+3x+1`D. `2x^(2)-3x-1`

Answer» Correct Answer - A
We have `(1)/(2)"g of "(x)=2x^(2)-5x+2`
`Rightarrow g(f(x))=4x^(2)-10x+4`
`(f(x))^(2)+f(x)-2=4x^(2)-10x+4`
`(f(x))^(2)+f(x)-(4x^(2)-10x+6)=0`
`f(x)=(-1pmsqrt(1+4(4x^(2)-10x+6)))/(2)`
`f(x)=(-1pmsqrt((16x^(2)-40x+25)))/(2)`
`f(x)=(-1pm(4x-5))/(2)=2x-3,-2x+2`
Hence, `f(x)=2x-3`
215.

Let f, g : R → R be defined, respectively by f(x) = x + 1 and g(x) = 2x – 3. Find f + g, f – g and f/g. Find the domain in each case.

Answer»

Given,

f(x) = x + 1 and 

g(x) = 2x – 3 

Clearly,

Both f(x) and g(x) exist for all real values of x. 

Hence,

Domain of f = Domain of g = R 

Range of f = Range of g = R 

i. f + g 

We know,

(f + g)(x) = f(x) + g(x) 

⇒ (f + g)(x) = x + 1 + 2x – 3 

∴ (f + g)(x) = 3x – 2 

Domain of f + g = Domain of f ∩ Domain of g 

⇒ Domain of f + g = R ∩ R 

∴ Domain of f + g = R 

Thus,

f + g : R → R is given by 

(f + g)(x) = 3x – 2 

ii. f – g 

We know 

(f – g)(x) = f(x) – g(x) 

⇒ (f – g)(x) = x + 1 – (2x – 3) 

⇒ (f – g)(x) = x + 1 – 2x + 3 

∴ (f – g)(x) = –x + 4 

Domain of f – g = Domain of f ∩ Domain of g 

⇒ Domain of f – g = R ∩ R 

∴ Domain of f – g = R 

Thus, 

f – g : R → R is given by 

(f – g)(x) = –x + 4

iii. \(\frac{f}{g}\) 

We know,

(\(\frac{f}{g}\))(x) = \(\frac{f(x)}{g(x)}\)

∴ (\(\frac{f}{g}\))(x) = \(\frac{x+1}{2x-3}\) 

Clearly,

(\(\frac{f}{g}\))(x) is defined for all real values of x,

Except for the case when 2x – 3 = 0 or x = \(\frac{3}{2}\).

When  x = \(\frac{3}{2}\),(\(\frac{f}{g}\))(x) will be undefined as the division result will be indeterminate. 

Thus,

Domain of \(\frac{f}{g}\) = R – \(\{\frac{3}{2}\}\)

Thus, 

\(\frac{f}{g}\) : R – \(\{\frac{3}{2}\}\)  → R is given by

(\(\frac{f}{g}\))(x) = \(\frac{x+1}{2x-3}\) 

216.

If f(x) = x2 – 3x + 4, then find the values of x satisfying the equation f(x) = f(2x + 1).

Answer»

Given,

f(x) = x2 – 3x + 4.

We need to find x satisfying 

f(x) = f(2x + 1). 

We have,

f(2x + 1) = (2x + 1)2 – 3(2x + 1) + 4 

⇒ f(2x + 1) = (2x)2 + 2(2x)(1) + 12 – 6x – 3 + 4 

⇒ f(2x + 1) = 4x2 + 4x + 1 – 6x + 1 

∴ f(2x + 1) = 4x2 – 2x + 2 

Now, 

f(x) = f(2x + 1) 

⇒ x2 – 3x + 4 = 4x2 – 2x + 2 

⇒ 3x2 + x – 2 = 0 

⇒ 3x2 + 3x – 2x – 2 = 0 

⇒ 3x(x + 1) – 2(x + 1) = 0 

⇒ (x + 1)(3x – 2) = 0 

⇒ x + 1 = 0 or 3x – 2 = 0 

⇒ x = –1 or 3x = 2 

∴ x = –1 or \(\frac{2}{3}\)

Thus,

The required values of x are –1 and \(\frac{2}{3}\).

217.

If f(x) = {(x2,when x<0),(x, when 0≤x≤1),(1/x, when x>1), find:\( f(x) = \begin{cases} x^2,\text{when }x<0\\ x, \text{when } 0≤x≤1\\\frac{1}{x},\text {when} x>1 \end{cases} \), Find:i.f(\(\frac{1}{2}\))ii. f(–2) iii. f(1) iv. f(\(\sqrt 3\))v. f(\(\sqrt {-3}\))

Answer»

Given,

f(x) = {(x2,when x<0),(x, when 0≤x≤1),(1/x, when x>1)

i. f(\(\frac{1}{2}\))

When 0 ≤ x ≤ 1, 

f(x) = x

∴  f(\(\frac{1}{2}\)) = \(\frac{1}{2}\)

ii. f(–2) 

When x < 0, 

f(x) = x2 

⇒ f(–2) = (–2)2 

∴ f(–2) = 4

iii. f(1) 

When x ≥ 1,

f(x) = \(\frac{1}{x}\)

⇒ f(1) = \(\frac{1}{1}\)

∴ f(1) = 1

iv. f(\(\sqrt 3\))

We have,

\(\sqrt 3\) ≈ 1.732 > 1

When x ≥ 1,

f(x) = \(\frac{1}{x}\)

∴ f(\(\sqrt 3\)) = \(\frac{1}{\sqrt 3}\)

v. f(\(\sqrt {-3}\))

We know, 

\(\sqrt {-3}\) is not a real number and the function f(x) is defined only when x ∈ R.

Thus,

 f(\(\sqrt {-3}\)) does not exist.

218.

Find the domain and range of the following function.g(x) = \(\frac{x+4}{x-2}\) 

Answer»

g(x) = \(\frac{x+4}{x-2}\) 

Function g is defined everywhere except at x = 2.

∴ Domain of g = R – {2}

Let y = g(x) = \(\frac{x+4}{x-2}\) 

∴ (x – 2) y = x + 4

∴ x(y – 1) = 4 + 2y

∴ For every y, we can find x, except for y = 1.

∴ y = 1 ∉ range of function g

∴ Range of g = R – {1}

219.

Solve the following for x, where |x| is modulus function, [x] is the greatest integer function, {x} is a fractional part function. 2[2x – 5] – 1 = 7

Answer»

2[2x – 5] – 1 = 7 

∴ [2x – 5] = 7+1/2 = 4

∴ [2x] – 5 = 4 

∴ [2x] = 9 

∴ 9 ≤ 2x < 10

∴ 9/2 ≤ x < 5

∴ Solution set =[9/2, 5]

220.

Solve the following for x, where |x| is modulus function, [x] is the greatest integer function, {x} is a fractional part function.[x – 2] + [x + 2] + {x} = 0

Answer»

[x – 2] + [x + 2] + {x} = 0 

∴ [x] – 2 + [x] + 2 + {x} = 0 

∴ [x] + x = 0 …..[{x} + [x] = x] 

∴ x = 0

221.

Solve the following for x, where |x| is modulus function, [x] is the greatest integer function, {x} is a fractional part function.[x/2] + [x/3] = 5x/6

Answer»

[x/2] + [x/3] = 5x/6

L.H.S. = an integer 

R.H.S. = an integer 

∴ x = 6k, where k is an integer

222.

Solve the following for x, where |x| is modulus function, [x] is the greatest integer function, {x} is a fractional part function. -2 &lt; [x] ≤ 7

Answer»

-2 < [x] ≤ 7 

∴ -2 < x < 8 

∴ Solution set = (-2, 8)

223.

Find x, if g(x) = 0 whereg(x) = \(\frac{18-2x^2}7\)

Answer»

g(x) = \(\frac{18-2x^2}7\) 

g(x) = 0

∴ 18 – 2x2 = 0

∴ x2 = 9

∴ x = ±3

224.

Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} and f: A → B, g: B → C be defined as f(x) = 2x + 1 and g(x) = x2 − 2. Express (gof)−1 and f−1og−1 as the sets of ordered pairs and verify that (gof)−1 = f−1og−1.

Answer»

Given f(x) = 2x + 1

⇒ f = {(1, 2(1) + 1), (2, 2(2) + 1), (3, 2(3) + 1), (4, 2(4) + 1)}

= {(1, 3), (2, 5), (3, 7), (4, 9)}

Also given g(x) = x− 2

⇒ g = {(3, 32 − 2), (5, 52 − 2), (7, 72 − 2), (9, 92 − 2)}

= {(3, 7), (5, 23), (7, 47), (9, 79)}

So, f and g are bijections and,

Hence, f−1: B → A and g−1: C → B exist.

Therefore, f−1= {(3, 1), (5, 2), (7, 3), (9, 4)} 

And g−1= {(7, 3), (23, 5), (47, 7), (79, 9)}

Now, (f−1og−1): C → A

f−1og−1 = {(7, 1), (23, 2), (47, 3), (79, 4)} ...(1)

Also, f: A → B and g: B → C,

⇒ gof: A → C, (gof)−1 : C → A

Therefore, f−1og−1 and (gof)−1 have same domains.

(gof)(x) = g(f(x))

=g(2x + 1)

=(2x +1 )− 2

⇒ (gof)(x) = 4x+ 4x + 1 − 2

⇒ (gof)(x) = 4x+ 4x − 1

Now, (gof)(1) = g(f(1)) 

= 4 + 4 − 1 

= 7,

(gof)(2) = g(f(2))

= 4 + 4 – 1 = 23,

(gof)(3) = g(f(3))

= 4 + 4 – 1 = 47 and 

(gof)(4) = g(f(4))

= 4 + 4 − 1 = 79

Therefore, gof = {(1, 7), (2, 23), (3, 47), (4, 79)}

⇒ (gof) – 1 = {(7, 1), (23, 2), (47, 3), (79, 4)} …(2)

From equations (1) and (2), we get:

(gof)−1 = f−1og−1

225.

Find x, if g(x) = 0 where g(x) = 6x2 + x – 2

Answer»

g(x) = 6x2 + x – 2

g(x) = 0

∴ 6x + x – 2 = 0

∴ (2x – 1) (3x + 2) = 0

∴ 2x – 1 = 0 or 3x + 2 = 0

∴ x = 1/2 or x = -2/3

226.

Solve the following for x, where |x| is modulus function, [x] is the greatest integer function, {x} is a fractional part function. |x2 – 9| + |x2 – 4| = 5

Answer»

|x2 – 9| + |x2 – 4| = 5 

∴ |(x – 3) (x + 3)| + |(x – 2) ( x + 2)| = 5 ………(i) 

Case I: x < -3 

Also, x < -2, x < 2, x < 3

∴ (x – 3) (x + 3) > 0 and (x – 2) (x + 2) > 0 

Equation (i) reduces to  x2 – 9 + x2 – 4 = 5 

∴ 2x2 = 18 

∴ x = -3 or 3 (both rejected as x < -3)

Case II: -3 ≤ x < -2 

As x < -2, x < 3 

∴ (x – 3) (x + 3) < 0, (x – 2) (x + 2) > 0 

Equation (i) reduces to -(x2 – 9) + x2 – 4 = 5 

∴ 5 = 5 (true) 

-3 ≤ x < -2 is a solution ….(ii)

Case III: -2 ≤ x < 2 As x > -3, x < 3 

∴ (x – 3) (x + 3) < 0, 

(x – 2) (x + 2) < 0 

Equation (i) reduces to  9 – x2 + 4 – x2 = 5 

∴ 2x2 = 13 – 5 

∴ x2 = 4 

∴ x = -2 is a solution …..(iii)

Case IV: 2 ≤ x < 3 As x > -3, x > -2 

∴ (x – 3) (x + 3) < 0, (x – 2) (x + 2) > 0 

Equation (i) reduces to  9 – x2 + x2 – 4 = 5 

∴ 5 = 5 (true) 

∴ 2 ≤ x < 3 is a solution ……(iv)

Case V: 3 ≤ x As x > -3, x > -2, x > 2 

∴ (x + 3) (x – 3) > 0, (x – 2) (x + 2) > 0 

Equation (i) reduces to x2 – 9 + x2 – 4 = 5 

∴ 2x = 18 

∴ x = 9 

∴ x = 3 …..(v) 

(x = -3 rejected as x ≥ 3) From (ii), (iii), (iv), (v), we get 

∴ Solution set = [-3, -2] ∪ [2, 3]

227.

Solve the following for x, where |x| is modulus function, [x] is the greatest integer function, {x} is a fractional part function.(i) |x| ≤ 3(ii) 2|x| = 5(iii) [x + [x + [x]]] = 9

Answer»

(i) |x| ≤ 3 The solution set of |x| ≤ a is -a ≤ x ≤ a

∴ The required solution is -3 ≤ x ≤ 3

∴ The solution set is [-3, 3]

(ii) 2|x| = 5

∴ |x| = 5/2

∴ x = ± 5/2

(iii) [x + [x + [x]]] = 9 

∴ [x + [x] + [x] ] = 9 …….[[x + n] = [x] + n, if n is an integer]

∴ [x + 2[x]] = 9

∴ [x] + 2[x] = 9 …..[[2[x] is an integer]]

∴ [x] = 3

∴ x ∈ [3, 4)

228.

Classify the following functions as injection, surjection or bijection:f : Z → Z given by f(x) = x3

Answer»

One – One Function: – A function f: A → B is said to be a one – one functions or an injection if different elements of A have different images in B.

So, f: A → B is One – One function

⇔ a≠b

⇒ f(a)≠f(b) for all a, b ∈ A

⇔ f(a) = f(b)

⇒ a = b for all a, b ∈ A

Onto Function: – A function f: A → B is said to be a onto function or surjection if every element of A i.e, if f(A) = B or range of f is the co – domain of f.

So, f: A → B is Surjection iff for each b ∈ B, there exists a ∈ B such that f(a) = b

Bijection Function: – A function f: A → B is said to be a bijection function if it is one – one as well as onto function.

Now, f: N → N given by f(x) = x3

Check for Injectivity:

Let x,y be elements belongs to N i.e x, y ∈ N such that

So, from definition

⇒ f(x) = f(y)

⇒ x3 = y3

⇒ x3 – y3 = 0

⇒ x = y

Hence f is One – One function

Check for Surjectivity:

Let y be element belongs to N i.e y ∈ N be arbitrary, then

⇒ f(x) = y

⇒ x3 = y

⇒ x = 3y 

⇒ 3y not belongs to X for non–perfect square value of y.

Since f attain only cubic number like 1,8,27….

Therefore no non – perfect square value of y has a pre–image in domain N.

Hence, f is not Onto function.

Thus, Not Bijective also.

229.

Classify the following functions as injection, surjection or bijection:f : N → N given by f(x) = x3

Answer»

One – One Function: – A function f: A → B is said to be a one – one functions or an injection if different elements of A have different images in B.

So, f: A → B is One – One function

⇔ a≠b

⇒ f(a)≠f(b) for all a, b ∈ A

⇔ f(a) = f(b)

⇒ a = b for all a, b ∈ A

Onto Function: – A function f: A → B is said to be a onto function or surjection if every element of A i.e, if f(A) = B or range of f is the co – domain of f.

So, f: A → B is Surjection iff for each b ∈ B, there exists a ∈ B such that f(a) = b

Bijection Function: – A function f: A → B is said to be a bijection function if it is one – one as well as onto function.

Now, f : N → N given by f(x) = x3

Check for Injectivity:

Let x,y be elements belongs to N i.e x, y ∈ N such that

⇒ f(x) = f(y)

⇒ x3 = y3

⇒ x3 – y3 = 0

⇒ (x – y)(x2 + y2 + xy) = 0

As x, y ∈ N therefore x2 + y2 + xy >0

⇒ x – y = 0

⇒ x = y

Hence f is One – One function

Check for Surjectivity:

Let y be element belongs to N i.e y ∈ N be arbitrary, then

⇒ f(x) = y

⇒ x3 = y

⇒ x = 3y

⇒ 3y not belongs to N for non–perfect cube value of y.

Since f attain only cubic number like 1,8,27….,

Therefore no non – perfect cubic values of y in N (co – domain) has a pre–image in domain N.

Hence, f is not onto function

Thus, Not Bijective also

230.

Classify the following functions as injection, surjection or bijection:f : Z → Z given by f(x) = x2

Answer»

One – One Function: – A function f: A → B is said to be a one – one functions or an injection if different elements of A have different images in B.

So, f: A → B is One – One function

⇔ a≠b

⇒ f(a)≠f(b) for all a, b ∈ A

⇔ f(a) = f(b)

⇒ a = b for all a, b ∈ A

Onto Function: – A function f: A → B is said to be a onto function or surjection if every element of A i.e, if f(A) = B or range of f is the co – domain of f.

So, f: A → B is Surjection iff for each b ∈ B, there exists a ∈ B such that f(a) = b

Bijection Function: – A function f: A → B is said to be a bijection function if it is one – one as well as onto function.

Now, f : Z → Z given by f(x) = x2

Check for Injectivity:

Let x1, – x1 be elements belongs to Z i.e x1, - x1 ∈ Z such that

So, from definition

⇒ x1 ≠ – x1

⇒ (x1)2 = ( – x1)2

⇒ f(x1)2 = f( – x1)2

Hence f is not One – One function

Check for Surjectivity:

Let y be element belongs to Z i.e y ∈ Z be arbitrary, then

⇒ f(x) = y

⇒ x2 = y

⇒ x = ± y 

⇒ y not belongs to Z for non–perfect square value of y.

Therefore no non – perfect square value of y has a pre–image in domain Z.

Hence, f is not Onto function.

Thus, Not Bijective also.

231.

Classify the following functions as injection, surjection or bijection:f : N → N given by f(x) = x2

Answer»

One – One Function: – A function f: A → B is said to be a one – one functions or an injection if different elements of A have different images in B.

So, f: A → B is One – One function

⇔ a≠b

⇒ f(a)≠f(b) for all a, b ∈ A

⇔ f(a) = f(b)

⇒ a = b for all a, b ∈ A

Onto Function: – A function f: A → B is said to be a onto function or surjection if every element of A i.e, if f(A) = B or range of f is the co – domain of f.

So, f: A → B is Surjection iff for each b ∈ B, there exists a ∈ B such that f(a) = b

Bijection Function: – A function f: A → B is said to be a bijection function if it is one – one as well as onto function.

Now, f: N → N given by f(x) = x2

Check for Injectivity:

Let x,y be elements belongs to N i.e x, y ∈ N such that

So, from definition

⇒ f(x) = f(y)

⇒ x2 = y2

⇒ x2 – y2 = 0

⇒ (x – y)(x + y) = 0

As x, y ∈ N therefore x + y > 0

⇒ x – y = 0

⇒ x = y

Hence f is One – One function

Check for Surjectivity:

Let y be element belongs to N i.e y ∈ N be arbitrary, then

⇒ f(x) = y

⇒ x2 = y

⇒ x = y 

⇒ y not belongs to N for non–perfect square value of y.

Therefore no non – perfect square value of y has a pre–image in domain N.

Hence, f is not Onto function.

Thus, Not Bijective also.

232.

The function `f:RR -> RR` defined by `f(x) = 6^x + 6^(|x|)` isA. one-one and ontoB. many one and ontoC. one-one and intoD. many one and into

Answer» Correct Answer - C
233.

Let `f(x)=sin[pi/6sin(pi/2sinx)]` for all `x in RR`A. Range of f is `[-(1)/(2), (1)/(2)]`B. Range of fog is `[-(1)/(2), (1)/(2)]`C. `lim_(x to 0)(f(x))/(g(x))=(pi)/(6)`D. There is an ` x in R` such that `(gof)(x) = 1`

Answer» Correct Answer - A::B::C
(a) `f(x)=sin[(pi)/(6)sin((pi)/(2)sin x )], x in R`
`=sin((pi)/(6)sin theta), theta in [-(pi)/(2), (pi)/(2)]" where " theta =(pi)/(2) sinx`
`=sin alpha, alpha in [-(pi)/(6),(pi)/(6)]," where " alpha =(pi)/(6) sin theta `
` therefore f(x) in [-(1)/(2),(1)/(2)]`
Hence, range of `f(x) in [-(1)/(2),(1)/(2)]`
So, option (a) is correct.
(b) ` f{g(x)}=f(t), t in [-(pi)/(2),(pi)/(2)] rArr f(t) in [-(1)/(2),(1)/(2)]`
`therefore` Option (b) is correct.
(c) `lim_(x to 0) (f(x))/(g(x))=lim_(x to 0)(sin[(pi)/(6)sin((pi)/(2)sin x )])/((pi)/(2)(sinx))`
`=lim_(x to 0) (sin[(pi)/(6)sin((pi)/(2)sin x )])/((pi)/(6)sin((pi)/(2)sin x ))*((pi)/(6)sin((pi)/(2)sin x ))/(((pi)/(2) sinx))`
`=1 xx (pi)/(6) xx 1 = (pi)/(6)`
` therefore` Option (c) is correct.
(d) ` g{f(x)}=1`
`rArr (pi)/(2) sin {f(x)}=1`
`rArr sin{f(x)} =(2)/(pi) " ...(i)" `
But ` f(x) in [-(1)/(2),(1)/(2)] subset [-(pi)/(6),(pi)/(6)] `
` therefore sin{f(x)} in [-(1)/(2),(1)/(2)] " ...(ii)" `
`rArr sin{f(x)} ne (2)/(pi)," " `[from Eqs. (i) and (ii) ]
i.e. No solution.
` therefore` Option (d) is not correct.
234.

Let `A=R-{2}`and `B=R-{1}`. If `f: A->B`is a mapping defined by`f(x)=(x-1)/(x-2)`, show that `f`is bijective.

Answer» Correct Answer - `f^(-1)(y)=(2y-1)/(y-1)`
235.

Let `f : R to R : f(x) =(1)/(2) (3x+1) ` .Show that f is invertible and find `f^(-1)`

Answer» Correct Answer - `f^(-1) (y)=((2y-1))/(3)`
236.

If `f(x) = (a-x^n)^(1/n)` then `fof(x)` is (A) x (B) a-x (C) `x^2` (D) `-1/x^n`A. aB. xC. `x^(n)`D. `a^(n)`

Answer» Correct Answer - B
237.

Let `f:[-1,oo] in [-1,oo]` be a function given `f(x)=(x+1)^(2)-1, x ge -1` Statement-1: The set `[x:f(x)=f^(-1)(x)]={0,1}` Statement-2: f is a bijection.A. 1B. 2C. 3D. 4

Answer» Correct Answer - A
238.

Statement-1: The funciton `f: N to N` given by `f(n)=n-(-1)^(n)` for all `n in N` is invertible. Statement-2: The successor and prodecessor of an even natural number are odd natural numbers and that of an odd natural number are even natural number.A. 1B. 2C. 3D. 4

Answer» Correct Answer - A
239.

Let the funciton `f:R to R` be defined by `f(x)=2x+sin x`. Then, f isA. one-to-one and intoB. one-to-one but not ontoC. onto but not one-to-oneD. neither one-to-one nor onto

Answer» Correct Answer - A
Clearly, g(x)=2x is one-one and onto and it is a strictly increasing functions. Therefore, f(x)=2x+sin x both one-one and onto.
240.

Let `f: W to W : f(n) = {[(n+1) when n is even], [(n-1) when n is odd ]}` Show that `f` is invertible. Find `f^(-1)`

Answer» Let `f(n_(1)) =f(n_(2))`
Case 1 when `n_(1) ` is odd and `n_(2)` is even
In this case `f(n_(1)) =f(n_(2)) rArr n_(1) -1 = n_(2) +1`
` rArr n_(1)- n_(2)=2`
If `n_(1) ` is odd and `n_(2)` is even then `(n_(1) - n_(2)) ne 2`
Thus we arrive at a contradiction.
So , in the case `f(n_(1)) ne f(n_(2))`
Similarly when `n_(1)` is even and `n_(2)` is odd then `f(n_(1)) ne f(n_(2))`
Case 2 When `n_(1)` and `n_(2)` are both odd
In this case `f (n_(1)) =f(n_(2)) rArr n_(1) -1 =n_(2) -1`
`rArr n_(1) =n_(2)`
Case 3 When `n_(a) " and " n_(2) ` are both even
In this case `f(n_(1))= f(n_(2)) rArr n_(1) +1 =n_(2) +1`
`rArr n_(1)+ n_(2)`
Thus from all the cases we get `f(n_(1)) =f(n_(2)) rArr n_(1) = n_(2)`
`:. ` f is one-one
Now we show that f is onto .
Let `n in W.`
Case 1 when n is odd
In this case (n-1) is even
and f(n-1) =(n-1) +1=n
Case 2 When n is even
In this case (n+1) is odd
and f(n+1) =(n+1) -1=n
Thus each `n in W` has its pre-image in W.
`:.` f is onto .
Thus f is one-one onto and hence invertible
clealry we have
`f^(-1) (n) = { underset( (n+1) " when n is even ")((n-1) " when n is odd ")`
241.

Let `f: A to B; g: B to A` be two functions such that `fog = I_B`. Then; f is a surjection and g is an injection.A. f and g both are injectionsB. f and both are surjectionsC. f is and injection and g is a surjectionD. f is a injections and g is a surjection

Answer» Correct Answer - D
242.

Let f be a function defined from `F^(+)rarrR^(+).` If `(f(xy))^(2)=x(f(y))^(2)` for all positive numbers x and y, If `f(2)=6,` find `f(50)`=?A. 20B. 30C. 5D. 40

Answer» Correct Answer - B
`(f(xy))^(2)=x(f(y))^(2) and f(2)=6`
Put x = 25 and y = 2
`(f(50))^(2)=25(f(2))^(2)=25xx36`
`therefore" "f(50)=30`
243.

A function `f: R -> R` satisfy the equation `f (x)f(y) - f (xy)= x+y` for all `x, y in R` and `f(y) > 0`, thenA. `f(x)f^(-1)(x)=x^(2)-4`B. `f(x)f^(-1)(x)=x^(2)-6`C. `f(x)f^(-1)(x)=x^(2)-1`D. none of these

Answer» Correct Answer - C
Taking x = y = 1, we get
`f(1)f(1)-f(1)=2`
`rArr" "f^(2)(1)-f(1)-2=0`
`rArr" "(f(1)-2)(f(1)+1)=0`
`rArr" "f(1)=2`
Taking y = 1, we get
`f(x).f(1)-f(x)=x+1`
`rArr" "f(x)=x+1`
`rArr" "f^(-1)(x)=x-1`
`therefore" "f(x).f^(-1)(x)=x^(2)-1`
244.

Let `agt1` be a real number and `f(x)=log_(a)x^(2)" for "xgt 0.` If `f^(-1)` is the inverse function fo f and b and c are real numbers then `f^(-1)(b+c)` is equal toA. `f^(-1)(b).f^(-1)(c)`B. `f^(-1)(b)+f^(-1)(c)`C. `(1)/(f(b+c))`D. `(1)/(f^(-1)(b)+f^(-1)(c))`

Answer» Correct Answer - A
`y=2log_(a^(x))`
`rArr" "log_(a)x=(y)/(2)`
`rArr" "x=a^(y//2)`
`rArr" "f^(-1)(y)=a^(y//2)`
`rArr" "f^(-1)(b+c)=a^((b+c)/(2))=a^((b)/(2)).a^((c)/(2))=f^(-1)(b).f^(-1)(c)`
245.

If the function `f(x) ={x+1 if `x le 1` , 2x+1 if `1 lt x le 2` and g(x) = {`x^2` , `-1 le x le 2` `x+2 `2 le x le 3 ` then the number of roots of the equation `f(g(x))=2`A. 4B. 3C. 2D. 1

Answer» Correct Answer - C
`f(g(x))={{:(x^(2)+1,-1lexle1),(2x^(2)+1,1ltxlesqrt2):}`
`f(g(x))=2 rArr x^(2)+1=2 and 2x^(2)+1=2`
`rArr" "x=pm 1, x=pm(1)/(sqrt2)`
No. of solutions = 2
246.

The interval in which the function `y = f(x) = (x-1)/(x^2-3x+3)` transforms the real line isA. `(0,oo)`B. `(-oo,oo)`C. `[0,1]`D. `[-1//3,1]`

Answer» Correct Answer - D
247.

`f:R to R"given by"f(x)=2x+|cos x|,` isA. one-one and intoB. one-one and ontoC. many-one and intoD. many-one and onto

Answer» Correct Answer - B
Clearly, g `R to R` is given by g(x)=2x is a bijection. Also, it is strictly increasing function on R. Therefore, `f(x)=2x|cos x|` is also strictly increasing functions on R. Hence, it is one-one onto function.
248.

If `f: RvecR`is a function satisfying `f(x+y)=f(x y)`for all `x ,y in Ra d nf(3/4)=3/4,t h e nf(9/(16))=``3/4`b. `9/(16)`c. `(sqrt(3))/2`d. 0A. `(3)/(4)`B. `(9)/(16)`C. `(sqrt3)/(2)`D. `0`

Answer» Correct Answer - A
Let `f(0)=k.` Then `f(x)=f(x+0)=f(0)=k`
So, f is a constant function. But `f((3)/(4))=(3)/(4)`
`therefore" "f(x)=((3)/(4))" for all x and hence "f((9)/(16))=(3)/(4)`
249.

If a function `f: R ->R` be such that `f(x-f(y)) = f(f(y) )+xf(y)+f(x) -1 AA x , y in R` then `f(2)=`A. 1B. 3C. `-1`D. none of these

Answer» Correct Answer - C
We have,
`f(x-f(y))=f(f(y))+xy(dy)+f(x)-2" (1)"`
Put `x=f(y)=0`
Then `f(0)=f(0)+0+f(0)-1`
`therefore" "f(0)=1`
Putting `f(y)=x`
`therefore" "f(0)=f(x)+x^(2)+f(x)-1`
Hence, `f(x)=1-(x^(2))/(2)`
250.

Let `f:N->N` be defined by `f(x)=x^2+x+1,x in N`. Then is `f` isA. one-one ontoB. many one ontoC. one-one but not ontoD. none of these

Answer» Correct Answer - C