1.

Classify the following functions as injection, surjection or bijection:f : Z → Z given by f(x) = x2

Answer»

One – One Function: – A function f: A → B is said to be a one – one functions or an injection if different elements of A have different images in B.

So, f: A → B is One – One function

⇔ a≠b

⇒ f(a)≠f(b) for all a, b ∈ A

⇔ f(a) = f(b)

⇒ a = b for all a, b ∈ A

Onto Function: – A function f: A → B is said to be a onto function or surjection if every element of A i.e, if f(A) = B or range of f is the co – domain of f.

So, f: A → B is Surjection iff for each b ∈ B, there exists a ∈ B such that f(a) = b

Bijection Function: – A function f: A → B is said to be a bijection function if it is one – one as well as onto function.

Now, f : Z → Z given by f(x) = x2

Check for Injectivity:

Let x1, – x1 be elements belongs to Z i.e x1, - x1 ∈ Z such that

So, from definition

⇒ x1 ≠ – x1

⇒ (x1)2 = ( – x1)2

⇒ f(x1)2 = f( – x1)2

Hence f is not One – One function

Check for Surjectivity:

Let y be element belongs to Z i.e y ∈ Z be arbitrary, then

⇒ f(x) = y

⇒ x2 = y

⇒ x = ± y 

⇒ y not belongs to Z for non–perfect square value of y.

Therefore no non – perfect square value of y has a pre–image in domain Z.

Hence, f is not Onto function.

Thus, Not Bijective also.



Discussion

No Comment Found