1.

If f(x) = {(x2,when x<0),(x, when 0≤x≤1),(1/x, when x>1), find:\( f(x) = \begin{cases} x^2,\text{when }x<0\\ x, \text{when } 0≤x≤1\\\frac{1}{x},\text {when} x>1 \end{cases} \), Find:i.f(\(\frac{1}{2}\))ii. f(–2) iii. f(1) iv. f(\(\sqrt 3\))v. f(\(\sqrt {-3}\))

Answer»

Given,

f(x) = {(x2,when x<0),(x, when 0≤x≤1),(1/x, when x>1)

i. f(\(\frac{1}{2}\))

When 0 ≤ x ≤ 1, 

f(x) = x

∴  f(\(\frac{1}{2}\)) = \(\frac{1}{2}\)

ii. f(–2) 

When x < 0, 

f(x) = x2 

⇒ f(–2) = (–2)2 

∴ f(–2) = 4

iii. f(1) 

When x ≥ 1,

f(x) = \(\frac{1}{x}\)

⇒ f(1) = \(\frac{1}{1}\)

∴ f(1) = 1

iv. f(\(\sqrt 3\))

We have,

\(\sqrt 3\) ≈ 1.732 > 1

When x ≥ 1,

f(x) = \(\frac{1}{x}\)

∴ f(\(\sqrt 3\)) = \(\frac{1}{\sqrt 3}\)

v. f(\(\sqrt {-3}\))

We know, 

\(\sqrt {-3}\) is not a real number and the function f(x) is defined only when x ∈ R.

Thus,

 f(\(\sqrt {-3}\)) does not exist.



Discussion

No Comment Found