1.

Let `f:[4,oo)to[4,oo)` be defined by `f(x)=5^(x^((x-4)))`.Then `f^(-1)(x)` isA. `2-sqrt(4-logs x)`B. `2+sqrt(4+logs x)`C. `((1)/5)^(x^(x+4))`D. not defined

Answer» Correct Answer - B
Clearly, `f:[4,oo)to[4,oo)` is a bijection. So, its is invertible.
f(x)=y, Then
`5^(x^(x-4))=y`
`Rightarrowx^(2)-4x=log_(5)y`
`Rightarrow x^(2)-4x-log_(5)y=0`
`Rightarrow x=(4pmsqrt16+4log_(5)y)/(2)`
`Rightarrow f^(-1)(y)=2+sqrt(4+log_(5)y)`
`Rightarrow f^(-1)(y)=2+sqrt(4+log_(5)y) " "[thereforex ge 4]`
Hence, `f^(-1)(x)=2+sqrt(4+log_(5)x)`
We know that if (g) x is inverse of a bijection f(x) then
`fog(x)=x Rightarrowf(g(x))=x`
This relation suggests the following method for finding the inverset of a bijection.


Discussion

No Comment Found