1.

Find the equation of the hyperbola referred to its principal axes: Whose length of transverse axis is 8 and distance between foci is 10. 

Answer»

Let the required equation of hyperbola be \(\frac{x^2}{a^2} - \frac {y^2}{b^2} = 1\)

Length of transverse axis = 2a 

Given, length of transverse axis = 8 

⇒ 2a = 8 

⇒ a = 4 

⇒ a2 = 16 

Distance between foci = 2ae 

Given, distance between foci = 10 

⇒ 2ae = 10 

⇒ ae = 5

⇒ a2 e2 = 25 

Now, b2 = a2 (e2 – 1) 

⇒ b2 = a2 e2 – a2 

⇒ b2 = 25 – 16 = 9

The required equation of hyperbola is \(\frac {x^2}{16} - \frac {y^2}{9}=1\)



Discussion

No Comment Found