1.

Find the eccentricity of the hyperbola, which is conjugate to the hyperbola x2 – 3y2 = 3

Answer»

 Given, one of the foci of the hyperbola is  x2 – 3y2 = 3

\(\frac{x^2}{3} - \frac {y^2}{1} = 1\)

Equation of the hyperbola conjugate to the above hyperbola is \(\frac {y^2}{1}-\frac{x^2}{3} = 1\)

Comparing this equation with \(\frac{x^2}{b^2} - \frac {y^2}{a^2} = 1\)

we get b2 = 1 and a2 = 3 

Now, a2 = b2 (e2 – 1) 

⇒ 3 = 1(e2 – 1) 

⇒ 3 = e – 1 

⇒ e2 = 4 

⇒ e = 2 …..[∵ e > 1]



Discussion

No Comment Found