1.

Find the equation of the hyperbola referred to its principal axes: Whose lengths of transverse and conjugate axes are 6 and 9 respectively.

Answer»

Let the required equation of hyperbola be \(\frac{x^2}{a^2} - \frac {y^2}{b^2} = 1\)

Length of transverse axis = 2a 

Given, length of transverse axis = 6 

⇒ 2a = 6 

⇒ a = 3 

⇒ a2 = 9 

Length of conjugate axis = 2b 

Given, length of conjugate axis = 9

⇒ 2b = 9

⇒ b = 9/2

⇒ b2 = 81/4

The required equation of hyperbola is \(\frac {x^2}{9} - \frac {y^2}{\frac{81}{4}}=1\)

i.e., \(\frac {x^2}{9} - \frac {4y^2}{81}=1\)



Discussion

No Comment Found