Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

501.

State Pythagoras theorem

Answer»

The square of the hypotenuse is equal to the sum of the squares of the other two sides. Here, the hypotenuse is the longest side and it’s always opposite the right angle. 

502.

From the given figure, ar (ΔADE): ar (ΔABC) =(A) 25 : 9 (B) 9 : 64 (C) 25 : 64 (D) 9 : 25

Answer»

Correct option is (B) 9 : 64

\(\because DE\bot AC\;\&\;BC\bot AC\)

\(\therefore DE\,||\,BC\)

Now in triangles \(\triangle ADE\;\&\;\triangle ABC,\)

\(\angle ADE=\angle ABC,\)   (Corresponding angles as DE || BC)

\(\angle AED=\angle ACB\) \(=90^\circ\)

\(\angle DAE=\angle BAC\)      (Common angle)

\(\therefore\) \(\triangle ADE\sim\triangle ABC\)        (By AAA similarity rule)

\(\therefore\frac{ar(\triangle ADE)}{ar(\triangle ABC)}=(\frac{AD}{AB})^2\)

\(=(\frac{DE}{BC})^2=(\frac{AE}{EC})^2\)

\(\Rightarrow\frac{ar(\triangle ADE)}{ar(\triangle ABC)}=(\frac{AE}{AE+EC})^2\)

\(=(\frac{3}{3+5})^2=(\frac{3}{8})^2\)

\(=\frac{3^2}{8^2}=\frac9{64}\)

\(\therefore\) \(ar(\triangle ADE):ar(\triangle ABC)\) = 9:64

Correct option is: (B) 9 : 64

503.

State the SSS-criterion for similarity of triangles.

Answer»

In two triangles, if three sides of the one are proportional to the corresponding sides of the other, the triangles are similar.

504.

State the SSS-similarity criterion for similarity of triangles

Answer»

If the corresponding sides of two triangles are proportional then their corresponding angles are equal, and hence the two triangles are similar.

505.

State SSS similarity criterion.

Answer»

SSS similarity criterion: If in two triangles, sides of one triangle are proportional to the sides of the other triangle, then their corresponding angles are equal and hence the two triangles are similar.

506.

State SAS similarity criterion.

Answer»

SAS similarity criterion: If one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.

507.

State the SAS-similarity criterion.

Answer»

In two triangles, if two sides of the one are proportional to the corresponding sides of the other and their included angles are equal, the two triangles are similar.

508.

State the SAS-similarity criterion

Answer»

If one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional then the two triangles are similar.

509.

From the given figure, the value represented by ‘x’ is …………(A) 12 cm (B) 11 cm (C) 13 cm (D) 16 cm

Answer»

Correct option is (C) 13 cm

We have AD = 3 cm & CD = 4 cm, \(\angle ADC=90^\circ\)

By using Pythagoras theorem in \(\triangle ADC,\) we obtain

\(AC^2=AD^2+CD^2\)

\(=3^2+4^2\)

\(=9+16=25\)

\(\Rightarrow\) \(AC=\sqrt{25}=5\,cm\)

Now in right \(\triangle ACB,\) we have \(BC=12\,cm,AC=5\,cm\;and\;AB=x\)

\(\therefore\) \(AB^2=AC^2+BC^2\)          (By using Pythagoras theorem in right \(\triangle ACB)\) 

\(=5^2+12^2\)

\(=25+144=169\)

\(\therefore\) \(AB=\sqrt{169}=13\,cm\)

Correct option is: (C) 13 cm

510.

State the SSS-similarity criterion for similarity of triangles

Answer»

If the corresponding sides of two triangles are proportional then their corresponding angles are equal, and hence the two triangles are similar.

511.

State the SAS-similarity criterion

Answer»

If one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional then the two triangles are similar.

512.

State Pythagoras’ theorem.

Answer»

In a right angled triangle, the square on the hypotenuse is equal to the sum of squares on the other two sides.

513.

State Pythagoras theorem

Answer»

The square of the hypotenuse is equal to the sum of the squares of the other two sides. Here, the hypotenuse is the longest side and it’s always opposite the right angle.

514.

In Fig 7.14, lengths of the sides of the triangles are indicated. By applying the SSS congruence rule, state which pairs of triangles are congruent. In case of congruent triangles, write the result in symbolic form

Answer»

Answer: 

(i) ΔABC ≈ ΔPQR 

(ii) ΔDEF ≈ ΔNML 

(iii) Not congruent 

(iv) ΔADB ≈ ΔADC

515.

Choose the correct one. The trianlge ABC formed by AB = 5 cm, BC = 8 cm, AC = 4 cm is(a) an isosceles triangle only (b) a scalene triangle only(c) an isosceles right triangle (d) scalene as well as a right triangle

Answer»

Correct answer is (b) a scalene triangle only

516.

The diagonals of a quadrilateral ABCD intersect each other at the point O such that \(\frac{AO}{BO} = \frac{CO}{DO}\). Show that ABCD is a trapezium.

Answer»

Data: In the quadrilateral ABCD. the diagonals intersect at 0’ such that \(\frac{AO}{BO} = \frac{CO}{DO}\)

To Prove: ABCD is a trapezium. 

In the qudrilateral ABCD, \(\frac{AO}{BO} = \frac{CO}{DO}\)

∴ \(\frac{AO}{Co} = \frac{OB}{OD}\)

It means sides of ∆AOB and ∆DOC divides proportionately. 

∴ ∆AOB ||| ∆DOC. 

Similarly. ∆AOD ||| ∆BOC. 

Now, ∆AOB + ∆AOD = ∆BOC + ∆DOC 

∆ABD = ∆ABC. 

Both triangles are on the same base AB and between two pair of lines and equal in area. 

∴ AB || DC.

517.

In the following figure. ∆OBA ~ ∆ODC, ∠BOC = 125° and ∠CDO = 70°. Find ∠DOC, ∠DCO and ∠OAB.

Answer»

∆OBA ~ ∆ODC (data) 

In ∆OBA and ∆ODC, we have 

∠ODC = ∠OBA = 70° (. Alternate angle) 

∠AOB = 180°- 125° = 55° ( Adjacent angle) 

∴ ∠AOB = ∠DOC = 55° (: VertIcally opposite angles) 

∠OAB = ∠OCD = 55° (. Alternate angles) 

∴ ∠DOC=55° 

∠DCO = 55% 

∠OAB= 55%.

518.

The angles of a triangle are in the ratio 5 : 3 : 7 then, the triangle isA) An obtuse angled triangleB) Right angle triangle C) An Isosceles triangleD) An acute angled triangle

Answer»

D) An acute angled triangle

519.

If one angle of a triangle is equal to the sum of the other two angles, then the triangle is A) An isosceles triangle B) An obtuse triangle C) An equilateral triangle D) A right triangle

Answer»

C) An equilateral triangle

520.

From the adjacent figure, the value of x + y isA) 110° B) 140° C) 170° D) 30°

Answer»

Correct option is  A) 110°

521.

ABC is a triangle in which ∠A = 72°, the internal bisectors of angles B and C meet in O. Find the magnitude of ∠BOC.

Answer»

Given,

ABC is a triangle

∠A = 72° and internal bisectors of B and C meet O.

In ΔABC

∠A + ∠B + ∠C = 180°

72° + ∠B + ∠C = 180°

∠B + ∠C = 180° – 72°

∠B + ∠C = 108°

Divide both sides by 2, we get

\(\frac{∠B}{2}\) + \(\frac{∠C}{2}\)\(\frac{108}{2}\)

\(\frac{∠B}{2}\) + \(\frac{∠C}{2}\) = 54°

∠OBC + ∠OCB = 54° (i)

Now, in ΔBOC

∠OBC + ∠OCB + ∠BOC = 180°

54° + ∠BOC = 180°[Using (i)]

∠BOC = 180° – 54°

= 126°

522.

In ΔABC, ∠A = 40°. If \(\overrightarrow{BO}\) and \(\overrightarrow{CO}\) are the bisectors of ZB and ZC, then the value of ∠BOC isA) 110° B) 70° C) 40° D) 140°

Answer»

Correct option is  A) 110°

523.

In the given figure, ∆ODC~∆OBA, ∠BOC = 115° and ∠CDO = 70° . Find(i) ∠DCO (ii) ∠DCO (iii) ∠OAB (iv) ∠OBA.

Answer»

(i) It is given that DB is a straight line. 

Therefore, 

∠DOC + ∠COB = 180°

∠DOC = 180° − 115° = 65°

(ii) In ∆ DOC, we have: 

∠ODC + ∠DCO + ∠DOC = 180°

Therefore, 

70° + ∠DCO + 65° = 180°

⇒ ∠DCO = 180 − 70 − 65 = 45°

(iii) It is given that ∆ ODC - ∆ OBA 

Therefore, ∠OAB = ∠OCD = 45°

(iv) Again, ∆ ODC- ∆ OBA 

Therefore, 

∠OBA = ∠ODC = 70°

524.

In the adjoining figure, ABCD is a trapezium in which CD || AB and its diagonals intersect at O. If AO = (5x – 7) cm, OC = (2x + 1) cm, BO = (7x – 5) cm and OD = (7x + 1) cm, find the value of x.

Answer»

From given statement:

In Δ ADC

EO || AB || DC

By thales theorem: AE/ED = AO/OC …(1)

In Δ DAB,

EO || AB

So, By thales theorem: DE/EA = DO/OB …(2)

From (1) and (2)

AO/OC = DO/OB

(5x – 7) / (2x + 1) = (7x-5) / (7x+1)

(5x – 7)(7x + 1) = (7x – 5)(2x + 1)

35x2 + 5x – 49x – 7 = 14x2 – 10x + 7x – 5

35x2 – 14x2 – 44x + 3x – 7 + 5 = 0

21x2 – 42x + x – 2 = 0

21(x – 2) + (x – 2) = 0

(21x + 1)(x – 2) = 0

Either (21x + 1) = 0 or (x – 2) = 0

x = -1/21 (does not satisfy) or x = 2

=> x = 2.

525.

In the given figure, ∆ODC ~ ∆OBA, ∠BOC = 115° and ∠CDO = 70°. Find:(i) ∠DOC(ii) ∠DCO(iii) ∠OAB(iv) ∠OBA

Answer»

Here ∆ODC ~ ∆OBA, so

∠D = ∠B = 70°

∠C = ∠A

∠COD = ∠AOB

(i) But ∠DOC + ∠BOC = 180° (Linear pair)

∠DOC + 115°= 180°

∠DOC = 180° – 115° = 65°

(ii) ∠DOC + ∠CDO + ∠DCO = 180° (Angles of a triangle)

65° + 70° + ∠DCO = 180°

135° + ∠DCO = 180°

∠DCO = 180° – 135° = 45°

(iii) ∠AOB = ∠DOC = 65° (vertically opposite angles)

∠OAB = ∠DCO = 45° (Since ∆ODC ~ ∆OBA)

(iv) ∠OBA = ∠CDO = 70° (Since ∆ODC ~ ∆OBA)

526.

Choose the correct one.The top of a broken tree touches the ground at a distance of 12 m from its base. If the tree is broken at a height of 5 m from the ground then the actual height of the tree is(a) 25 m (b) 13 m (c) 18 m (d) 17 m

Answer»

Correct answer is (c) 18 m

527.

Try to construct a triangle with 5 cm, 8 cm and 1 cm. Is it possible or not ? Why ? Give your justification.

Answer»

As the sum (6 cm) of two sides 5 cm and 1 cm is less than third side. It is not possible to construct a triangle with the given measures.

528.

In a ∆ABC, M and N are points on the sides AB and AC respectively such that BM = CN. If ∠B = ∠C then show that MN || BC.

Answer»

In ∆ABC, M and N are points on the sides AB and AC respectively such that BM = CN and if ∠B = ∠C.

We know that, sides opposite to equal angles are equal.

AB = AC

BM = CN ( given)

AB – BM = AC – CN

=> AM = An

From ∆ABC

AM/MB = AN/NC

Therefore, MN ||BN

529.

In figure , if `Ababs()DC` and AC, PQ interrest each other at the point 0. Prove that OA.CQ=OC.AP.

Answer» Given AC and PQ intersect each other at the point O and AB`abs()`DC.
To prove OA.CQ=OC.AP
Proof In `DeltaAOP and DeltaCOQ` `angleAOP=angleCOQ` [vertically opposite angle]
`angleAPO=angleCQO`
[Since, AB`abs()`DC and PQ is transversal, so alternate angles]
`therefore DeltaAOP~DeltaCOQ` [by AAA similarity angles]
Then, `(OA)/(OC)=(AP)/(CQ)` {Since, corresponding sides are proportioonal]
`rArr OAcdotCQ=OCcdotAP` Hence proved.
530.

In `Delta ABC`, the bisector of `angle B` meets AC at D. A line `PQ||AC` meets AB,BC and BD at P,Q and R respectively. Show that `BPxxQR=BQxxPR`.

Answer» In `Delta BQP , BR` is the bisector of `angle B`.
`:. (QR)/(PR)=(BQ)/(BP)` [ by angle-bisector theorem]
531.

In the given figure, ABCD is a trapezium in which AB║DC and its diagonals intersect at O. If AO = (5x – 7), OC = (2x + 1) , BO = (7x – 5) and OD = (7x + 1), find the value of x.

Answer»

In trapezium ABCD, AB ‖ CD and the diagonals AC and BD intersect at O. 

Therefore, 

AO/ OC = BO/OD 

⇒ 5x−7/2x+1 = 7x−5/7x+1 

⇒ (5x-7) (7x+1) = (7x-5) (2x+1) 

⇒35x2 + 5x – 49x – 7 = 142 – 10x + 7x – 5 

⇒ 21x2 – 41x – 2 = 0 

⇒ 21x2 – 42x + x -2 =0 

⇒ 21x (x-2) +1 (x-2) =0 

⇒ (x-2) (21x + 1) =0 

⇒ x = 2, - 1/21 

∵ x ≠ - 1/21 

∴ x = 2

532.

M is a point on the side BC of a parallelogram ABCD. DM when produced meets AB produced at N. Prove that(i) DM/MN =  DC/BN (ii) DN/DM = AN/DC

Answer»

Given: ABCD is a parallelogram

To prove: 

(i) DM / MN = DC/BN

(ii) DN/DM =AN/ DC

Proof: In ∆ DMC and ∆ NMB 

∠DMC = ∠NMB (Vertically opposite angle) 

∠DCM = ∠NBM (Alternate angles) 

By AAA- Similarity 

∆DMC ~ ∆NMB 

∴DM /MN = DC/ BN

NOW, MN/DM = BN/DC

Adding 1 to both sides, we get 

MN/DM + 1 = BN/DC + 1 

⇒ MN+DM/DM = BN+DC/DC

⇒ MN+DM/DM = BN+ AB/DC [∵ ABCD is a parallelogram] 

⇒ DN/DM = AN/DC

533.

In a ∆ABC, AD is the bisector of ∠A. (i) If AB = 6.4cm, AC = 8cm and BD = 5.6cm, find DC. (ii) If AB = 10cm, AC = 14cm and BC = 6cm, find BD and DC. (iii) If AB = 5.6cm, BD = 3.2cm and BC = 6cm, find AC. (iv) If AB = 5.6cm, AC = 4cm and DC = 3cm, find BC.

Answer»

(i) It is give that AD bisects ∠A. 

Applying angle – bisector theorem in ∆ ABC, we get: 

BD/DC = AB/AC 

⇒ 5.6/DC = 6.4/8 

⇒ DC = 8×5.6/6.4 = 7 cm

(ii) It is given that AD bisects ∠A. 

Applying angle – bisector theorem in ∆ ABC, we get: 

BD/DC = AB/AC 

Let BD be x cm. 

Therefore, DC = (6- x) cm 

⇒ x/ 6−x = 10/14 

⇒ 14x = 60-10x 

⇒ 24x = 60 

⇒ x = 2.5 cm 

Thus, BD = 2.5 cm 

DC = 6-2.5 = 3.5 cm 

(iii) It is given that AD bisector ∠A. 

Applying angle – bisector theorem in ∆ ABC, we get: 

BD/DC = AB/AC 

BD = 3.2 cm, BC = 6 cm 

Therefore, DC = 6- 3.2 = 2.8 cm 

⇒ 3.2/2.8 = 5.6/AC 

⇒ AC = 5.6×2.8/3.2 = 4.9 cm

(iv) It is given that AD bisects ∠A. 

Applying angle – bisector theorem in ∆ ABC, we get: 

BD/DC = AB/AC 

⇒ BD/3 = 5.6/4 

⇒ BD = 5.6×3/4 

⇒ BD = 4.2 cm 

Hence, BC = 3+ 4.2 = 7.2 cm

534.

D and E are points on the sides AB and AC respectively of a ∆ABC. In each of the following cases, determine whether DE║BC or not.(i) AD = 5.7cm, DB = 9.5cm, AE = 4.8cm and EC = 8cm. (ii) AB = 11.7cm, AC = 11.2cm, BD = 6.5cm and AE = 4.2cm. (iii) AB = 10.8cm, AD = 6.3cm, AC = 9.6cm and EC = 4cm. (iv) AD = 7.2cm, AE = 6.4cm, AB = 12cm and AC = 10cm.

Answer»

(i) We have: 

AD/DE = 5.7/9.5 = 0.6  

AE/EC = 4.8/8 = 0.6  

Hence, AD/DB = AE/EC 

Applying the converse of Thales’ theorem, 

We conclude that DE || BC. 

(ii) We have: 

AB = 11.7 cm, DB = 6.5 cm 

Therefore, 

AD = 11.7 -6.5 = 5.2 cm 

Similarly, 

AC = 11.2 cm, AE = 4.2 cm 

Therefore, 

EC = 11.2 – 4.2 = 7 cm 

Now, 

AD/DB = 5.2/6.5 = 4/5 

AE/EC = 4.2/7 

Thus, AD/DB ≠ AE/EC 

Applying the converse of Thales’ theorem, 

We conclude that DE is not parallel to BC. 

(iii) We have: 

AB = 10.8 cm, AD = 6.3 cm 

Therefore,

DB = 10.8 – 6.3 = 4.5 cm 

Similarly, 

AC = 9.6 cm, EC = 4cm 

Therefore, 

AE = 9.6 – 4 = 5.6 cm 

Now, 

AD/DB = 6.3/4.5 = 7/5 

AE/EC = 5.6/4 = 7/5 

⟹ AD/DB = AE/EC 

Applying the converse of Thales’ theorem, 

We conclude that DE ‖ BC. 

(iv) We have : 

AD = 7.2 cm, AB = 12 cm 

Therefore, 

DB = 12 – 7.2 = 4.8 cm 

Similarly, 

AE = 6.4 cm, AC = 10 cm 

Therefore, 

EC = 10 – 6.4 = 3.6 cm 

Now, 

AD/DB = 7.2/4.8 = 3/2 

AE/EC = 6.4/3.6 = 16/9 

This, AD/DB ≠ AE/EC 

Applying the converse of Thales’ theorem, 

We conclude that DE is not parallel to BC.

535.

D and E are points on the sides AB and AC respectively of a ∆ABC such that DE║BC. Find the value of x, when(i) AD = x cm, DB = (x – 2) cm, AE = (x + 2) cm and EC = (x – 1) cm. (ii) AD = 4cm, DB = (x – 4) cm, AE = 8cm and EC = (3x – 19) cm. (iii) AD = (7x – 4) cm, AE = (5x – 2) cm, DB = (3x + 4) cm and EC = 3x cm.

Answer»

(i) In ∆ ABC, it is given that DE || BC. 

Applying Thales’ theorem, we have : 

AD/DB = AE/EC 

⇒ x/x−2 = x+2/x−1 

⇒X(x-1) = (x-2) (x+2) 

⇒x2 – x = x2 − 4 

⇒x= 4 cm 

(ii) In ∆ ABC, it is given that DE ‖ BC. 

Applying Thales’ theorem, we have : 

AD/DB = AE/EC 

⇒ 4/x−4 = 8/3x−19 

⇒ 4 (3x-19) = 8 (x-4) 

⇒12x – 76 = 8x – 32 

⇒4x = 44 

⇒ x = 11 cm 

(iii) In ∆ ABC, it is given that DE || BC. 

Applying Thales’ theorem, we have : 

AD/DB = AE/EC 

⇒ 7x−4/3x+4 = 5x−2/3x 

⇒3x (7x-4) = (5x-2) (3x+4)

⇒21x2 – 12x = 15x2 + 14x-8 

⇒6x2 – 26x + 8 = 0 

⇒(x-4) (6x-2) =0 

⇒ x = 4, 1/3 

∵ x ≠ 1/3 (as if x = 1/3 then AE will be negative) 

∴ x = 4 cm

536.

In following figure. altitudes AD and CE of ∆ABC Intersect each other at the point P. Show that:(i) ∆AEP ~ ∆CDP (ii) ∆ABD ~ ∆CBE (iii) ∆AEP ~ ∆AÐB (iv) ∆PDC ~ ∆BEC.

Answer»

Data: altitudes AD and CE of ABC Intersect each other at the point P. 

To Prove: 

(i) ∆AEP ~ ∆CDP 

(ii) ∆ABD ~ ∆CBE 

(iii) ∆AEP ~ ∆ADB 

(iv) ∆PDC ~ ∆BEC 

(i) In ∆AEP and ∆CDP. 

∠AEP = ∠CDP = 90° (data) 

∠APE = ∠CPD (Vertically opposite angle) 

∴ ∠PAE = ∠PCD These are equiangular triangles. 

Similarity criterion for ∆ is A.A.A 

∴ ∆AEP ~ ∆CDP 

(ii) In ∆ABD and ∆CBE. 

∠ADB = ∠CEB = 90° (data) 

∠ABD = ∠CBE (common) 

∴ ∠DAB = ∠BCE 

These are equiangular triangles. 

∴ Similarity criterion for is A.A.A. 

∴ ∆ABD ~ ∆CBE 

(iii) In ∆AEP and ∆ADB. 

∠AEB = ∠ADB = 90° (data) 

∠PAE = ∠DAB (common) 

∴ ∠APE = ∠ABD. 

∴ These are equiangular triangles. 

∴ Similarity criterion for is A.A.A. 

∴ ∆AEP ~ ∆ADB 

(iv) In ∆PDC and ∆BEC. 

∠PDC = ∠BEC = 90° (data) 

∠PCD = ∠BCE (common) 

∴ ∠CPD = ∠CBE 

∴ These are equiangular angular triangles. 

Similarity criterion for ∆ is A.A.A. 

∴ ∆PDC ~ ∆BEC.

537.

InFigure altitudes AD and CE of DABCintersect each other at the point P. Show that:(i) `DeltaA E P DeltaC D P`(ii) `DeltaA B D DeltaC B E`(iii) `DeltaA E P DeltaA D B`(iv) `DeltaP D C DeltaB E C`

Answer» In `Delta AEP and Delta CDP`, we have
`angle AEP= angle CDP` [ eacjh equal to `90^(@)`]
`angle APE= angle CPD` [ verticapply opposite `angle`]
`:. Delta AEP ~ Delta CDP` [ by AA- similarity]
(ii) In `Delta ABD and Delta CBE`, we have
`angle ADB= angle CEB=90^(@)`
`angle B= angle B` [ common]
`:. Delta ABD~ Delta CBE` [ by AA- similarity]
(iii) In `Delta AEP and Delta ADB`, we have
`angle AEP=angleADB=90^(@)`
`angle EAP= angle DAB` ( common)
Hence, `Delta AEP~ Delta ADB` [ by AA- similarity]
(iv) In `Delta PDC and Delta BEC`, we have
`angle PDC= angle BEC= 90^(@)`
`angle PCD= angle BCE` (common)
`:.Delta PDC ~ Delta BEC` [ by AA- similarity]
538.

The mean of first ‘n’ natural numbers is x. What is the mean of first ‘n’ even natural numbers.

Answer»

Mean of first ‘n’ even numbers = 2x

539.

An aeroplane leaves an airport and flies due north at a speed of 1000 km per hour. At the same tune, another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour. |How far apart will be the two planes after 1`1/2

Answer» `OA=1000*3/2=1500Km`
`OB=1200*3/2=1800Km`
`/_OAB` is right angled
`AB^2=OA^2+OB^2`
`AB^2=1500^2+1800^2`
`AB^2=61*300^2`
`AB=2540Km`
540.

A girl of height 90 cm is walking away from the base of a lamp-post at a speed of 1.2 m/s. If the lamp is 3.6 m above the ground, find the length of her shadow after 4 seconds.

Answer» `/_ABE and /_CDE`
`angleB=angleD=90^o`
`angleAEB=angleCED`
`/_ABE`~`/_CDE`(AA)
`(AB)/(CD)=(BE)/(DE)`
`3.6/0.9=(BD+DE)/(DE)`
`(BD)/(DE)=3`
`(DE)=(BD)/3=4.8/3=1.6m`
541.

The ratios of corresponding medians of two similar triangles is 2 : 3, then the ratio of their perimeters is (A) 2 : 3 (B) 3 : 2 (C) 1 : 2 (D) 2 : 1

Answer»

Correct option is (A) 2 : 3

The ratio of perimeters of two similar triangle is equal to the ratio of their corresponding sides/Altitudes/Medians.

\(\because\) Given that the ratio of corresponding medians of two similar triangles is 2:3.

\(\therefore\) The ratio of perimeter of similar triangle = 2:3

Correct option is: (A) 2 : 3

542.

The areas of the two similar triangles are in the ratio of the square of the corresponding medians.

Answer» BD=DC=1/2BC
QS=SR=1/2QR
`(BD)/(QS)=(DC)/(SR)=(BC)/(QR)`
-(1)`/_ABC`~`/_PQR`(AAA)
`(AB)/(PQ)=(BC)/(QR)=(CA)/(RP)`
`angleB=angleQ`
`/_ABC`~`/_PQS`
543.

The perimeters of two similar triangles are 25cm and 15cm respectively. If one side of first triangle is 9cm, what is the corresponding side of the other triangle?

Answer» Let `Delta ABC~ Delta DEF` given in such a way that perimeter of `Delta ABC=25cm`, perimeter of `Delta DEF=15 cm and AB=9cm`. Then, we to find DE. Let DE= x cm.
We know that the ratio of the perimeters of two similar triangles is the same as the ratio of the perimeters of two similar triangles is the same as the ratio of their corresponding sides.
`:. ("perimeter of" Delta ABC)/("perimeter of" Delta DEF)=(AB)/(DE)`
`rArr (25)/(15)=(9)/(x)rArr x((9xx25)/(25))=5.4`
`:. DE =5.4cm`
Hence, the corresponding side of the second triangle is 5.4 cm
544.

If the medians of two equilateral triangles are in the ratio 3 : 2, then what is the ratio of their sides?(a) 1 : 1 (b) 2 : 3 (c) 3 : 2 (d) √3: √2

Answer»

(c) 3 : 2

Median of an equilateral triangle = \(\frac{\sqrt2}{2}\) x side

Let the sides of the two equilateral triangles be a1 and a2 respected. Then,

\(\frac{\frac{\sqrt3}{2}a_1}{\frac{\sqrt3}{2}a_2}\) = \(\frac32\) ⇒ \(\frac{a_1}{a_2}\) = \(\frac32\).

545.

If the medians of two equilateral triangles are in the ratio 3 : 2, then what is ratio of the sides?(a) 1 : 1 (b) 2 : 3(c) 3 : 2 (d) √3 : √2

Answer»

(c) 3 : 2

Equilateral triangles are similar triangles. In similar triangles, the ratio of their corresponding sides is the same as the ratio of their medians.

546.

The point of concurrence of Medians of a triangle is called ……………A) CircumcentreB) CentroidC) OrthocentreD) Incentre

Answer»

Correct option is B) Centroid

547.

In ∆ ABC, ∠BAD = ∠CAD and BD = DC, thenA) ∆ ABC is equilateral B) ∆ ABC is scalene C) ∆ ABC is isosceles D) ∆ ABC is right angled

Answer»

C) ∆ ABC is isosceles

548.

Find the length of the altitude of an equilateral triangle of side 2a cm.

Answer» Correct Answer - `sqrt(3a) cm`
549.

In the given figure, two line segments AC and BD inersect each other at the point P such that`PA=6 cm, PB = 3 cm, PC= 2.5 cm, PD= 5 cm angle APB=50^(@) and angle CDP=30^(@)` then `angle PBA=?` A. `50^(@)`B. `30^(@)`C. `60^(@)`D. `100^(@)`

Answer» Correct Answer - D
550.

State whether the statements are True or False. In a triangle, sum of squares of two sides is equal to the square of the third side.

Answer»

In a triangle, sum of squares of two sides is equal to the square of the third side.

False