1.

In following figure. altitudes AD and CE of ∆ABC Intersect each other at the point P. Show that:(i) ∆AEP ~ ∆CDP (ii) ∆ABD ~ ∆CBE (iii) ∆AEP ~ ∆AÐB (iv) ∆PDC ~ ∆BEC.

Answer»

Data: altitudes AD and CE of ABC Intersect each other at the point P. 

To Prove: 

(i) ∆AEP ~ ∆CDP 

(ii) ∆ABD ~ ∆CBE 

(iii) ∆AEP ~ ∆ADB 

(iv) ∆PDC ~ ∆BEC 

(i) In ∆AEP and ∆CDP. 

∠AEP = ∠CDP = 90° (data) 

∠APE = ∠CPD (Vertically opposite angle) 

∴ ∠PAE = ∠PCD These are equiangular triangles. 

Similarity criterion for ∆ is A.A.A 

∴ ∆AEP ~ ∆CDP 

(ii) In ∆ABD and ∆CBE. 

∠ADB = ∠CEB = 90° (data) 

∠ABD = ∠CBE (common) 

∴ ∠DAB = ∠BCE 

These are equiangular triangles. 

∴ Similarity criterion for is A.A.A. 

∴ ∆ABD ~ ∆CBE 

(iii) In ∆AEP and ∆ADB. 

∠AEB = ∠ADB = 90° (data) 

∠PAE = ∠DAB (common) 

∴ ∠APE = ∠ABD. 

∴ These are equiangular triangles. 

∴ Similarity criterion for is A.A.A. 

∴ ∆AEP ~ ∆ADB 

(iv) In ∆PDC and ∆BEC. 

∠PDC = ∠BEC = 90° (data) 

∠PCD = ∠BCE (common) 

∴ ∠CPD = ∠CBE 

∴ These are equiangular angular triangles. 

Similarity criterion for ∆ is A.A.A. 

∴ ∆PDC ~ ∆BEC.



Discussion

No Comment Found

Related InterviewSolutions