1.

D and E are points on the sides AB and AC respectively of a ∆ABC such that DE║BC. Find the value of x, when(i) AD = x cm, DB = (x – 2) cm, AE = (x + 2) cm and EC = (x – 1) cm. (ii) AD = 4cm, DB = (x – 4) cm, AE = 8cm and EC = (3x – 19) cm. (iii) AD = (7x – 4) cm, AE = (5x – 2) cm, DB = (3x + 4) cm and EC = 3x cm.

Answer»

(i) In ∆ ABC, it is given that DE || BC. 

Applying Thales’ theorem, we have : 

AD/DB = AE/EC 

⇒ x/x−2 = x+2/x−1 

⇒X(x-1) = (x-2) (x+2) 

⇒x2 – x = x2 − 4 

⇒x= 4 cm 

(ii) In ∆ ABC, it is given that DE ‖ BC. 

Applying Thales’ theorem, we have : 

AD/DB = AE/EC 

⇒ 4/x−4 = 8/3x−19 

⇒ 4 (3x-19) = 8 (x-4) 

⇒12x – 76 = 8x – 32 

⇒4x = 44 

⇒ x = 11 cm 

(iii) In ∆ ABC, it is given that DE || BC. 

Applying Thales’ theorem, we have : 

AD/DB = AE/EC 

⇒ 7x−4/3x+4 = 5x−2/3x 

⇒3x (7x-4) = (5x-2) (3x+4)

⇒21x2 – 12x = 15x2 + 14x-8 

⇒6x2 – 26x + 8 = 0 

⇒(x-4) (6x-2) =0 

⇒ x = 4, 1/3 

∵ x ≠ 1/3 (as if x = 1/3 then AE will be negative) 

∴ x = 4 cm



Discussion

No Comment Found

Related InterviewSolutions