Saved Bookmarks
| 1. |
यदि `A+B+C=pi` तो सिद्ध कीजिए `sin^(2).(A)/(2)+sin^(2).(B)/(2)+sin^(2).(C)/(2)=1-2sin.(A)/(2)sin.(B)/(2)sin.(C)/(2)` |
|
Answer» बायाँ पक्ष `=(1)/(2)[2sin^(2).(A)/(2)+2sin^(2).(B)/(2)+2sin^(2).(C)/(2)]` `=(1)/(2)[1-cosA+1-cosB+2sin^(2).(C)/(2)]` `=(1)/(2)[2-(cosA+cosA)+2sin^(2).(C)/(2)]` `=(1)/(2)[2-2cos.(A+B)/(2)cos.(A-B)/(2)+2sin^(2).(C)/(2)]` `=(1)/(2)[2-2cos((pi)/(2)-(C)/(2))cos.(A-B)/(2)+2sin^(2).(C)/(2)]` `=(1)/(2)[2-2sin.(C)/(2)cos.(A-B)/(2)+2sin^(2).(C)/(2)]` `=(1)/([2-2sin.(C)/(2){cos.(A-B)/(2)+sin.(C)/(2)}]` `=(1)/(2)[2-2sin.(C)/(2){cos.(A-B)/(2)-sin.((pi)/(2)-(A+B)/(2))}]` `=(1)/(2)xx2[1-sin.(C)/(2){cos.(A-B)/(2)-cos.(A+B)/(2)}]` `=[1-sin.(C)/(2){2sin.(A)/(2)sin.(B)/(2)}]` `=1-2sin.(A)/(2)sin.(B)/(2)sin.(C)/(2)=` दायाँ पक्ष |
|