1.

सिद्ध कीजिए कि `sin20^(@)sin40^(@)sin60^(@)sin80^(@)=(3)/(16)`

Answer» बायाँ पक्ष `" "=sin 20^(@) sin 40^(@) sin 60^(@) sin 80^(@)`
`=sin 20^(@) sin 40^(@)(sqrt3)/(2)sin80^(@)" "(because sin 60^(@)=(sqrt3)/(2))`
`=(sqrt3)/(2)[(1)/(2){cos(40^(@)-20^(@))-cos(40^(@)+20^(@))}]sin 80^(@)`
`=(sqrt3)/(2)xx(1)/(2)(cos 20^(@)-cos60^(@))sin 80^(@)`
`=(sqrt3)/(4)(cos 20^(@)sin 80^(@)-cos 60^(@) sin 80^(@))`
`=(sqrt3)/(4) [(1)/(2){sin(20^(@)+80^(@))-sin (20^(@)-80^(@))}-(1)/(2)sin 80^(@)]" "(because cos 60^(@)=(1)/(2))`
`=(sqrt3)/(4)xx(1)/(2)[sin 100^(@)-sin(-60^(@))-sin 80^(@)]`
`=(sqrt3)/(8)[sin(180^(@)-80^(@))+sin 60^(@)-sin 80^(@)]`
`=(sqrt3)/(8)[sin 80^(@)+sin 60^(@)-sin 80^(@)]`
`=(sqrt3)/(8)sin 60^(@)`
`=(sqrt3)/(8)xx(sqrt3)/(2)`
`=(3)/(16)=` दायाँ पक्ष


Discussion

No Comment Found