1.

सिद्ध कीजिए कि `cos A+cos B+cos C+cos (A+B+C)=4cos.(A+B)/(2)cos.(B+C)/(2)cos.(C+A)/(2)`

Answer» बायाँ पक्ष `=cosA((A+B)/(2))cos((A-B)/(2))+2cos((A+B+2C)/(2))cos((A+B)/(2))`
`=2cos((A+B)/(2))[cos((A-B)/(2))+cos((A+B+2C)/(2))]`
`=2cos((A+B)/(2))cos((A-B)/(2))+2cos((A+B+2C)/(2))cos((A+B)/(2))`
`=2cos((A+B)/(2))[cos((A-B)/(2))+cos((A+B+2C)/(2))]`
`=2cos((A+B)/(2))[2cos.(((A-B)/(2)+(A+B+2C)/(2))/(2))cos.(((A+B+2C)/(2))-(A-B)/(2))/(2)]`
`=2cos((A+B)/(2))(2cos((A+C)/(2))cos((B+C)/(2)))`
`=4cos((A+B)/(2))cos((B+C)/(2))cos((C+A)/(2))=` दायाँ पक्ष


Discussion

No Comment Found