Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1751.

Plz help me how to get good Mark from mathematics

Answer» Study
Believe on yourself and focus on knowledge
Lots of practice only. Passing marks : 27 in cbse ....
1752.

Write the value of 2n-1C5 + 2n-1C6 + 2n-1C7

Answer»
1753.

How many 4 digit numbers are there with no digit repeated?

Answer» 4536
4536 correct answer
4536 correct
9×9×8×7=4536
9×9×8×7=4536If u are taking. 0,1,2,3,4,5,6,7,8,9
24
1754.

Sum of 5+55+555...to n terms

Answer» Is this a real question or u made it ???
1755.

Any one have half yearly blue print of Maths ....

Answer» Maths ka blue print mere friend ko chahiye tha ...
No, I have chosen Hindi
Aadika u have taken both maths and hindi?
Jaldii help karo
U r a kvaian so it might help
I got papers
1756.

Find the 4th term in the expansion of (x-2y)power 12

Answer» 4th term we should find it by using general formula Tr+1 = ^nCr X^n-r Y^rr=3 , n=12 ,X=x y=2y. Substute it in the formula .
1757.

Given f : R → R as f(x) = 3x + 4. If ordered pairs (a, 8) and (2, b) belong to ‘ f ’. Find a and b.

Answer»
1758.

1/8! + 1/7! = x/8! Find x.

Answer» X=9
1759.

Sina + sin(a + 2π/3) sin(a + 4π/3) =0

Answer»
1760.

Cos(180/2-x

Answer» Sinx
1761.

. find the sum of the first n terms of the series 3 + 7 + 13 + 21 + 31 + ......

Answer» Given: Sn = 3 + 7 + 13 + 21 + 31 + ...... + an-1 + an……….(i)Also Sn = 3 + 7 + 13 + 21 + 31 + ...... + an-2\xa0+ an-1\xa0+ an ……….(ii)Subtracting eq. (i) from eq. (ii), 0 = 3 + ( 4 + 6 + 8 + 10 + ....... up to (n - 1) terms) - an\xa0{tex}\\Rightarrow a _ { n } = 3 + \\frac { n - 1 } { 2 } [ 2 \\times 4 + ( n - 2 ) \\times 2 ]{/tex}{tex}\\Rightarrow a _ { n } = 3 + \\frac { n - 1 } { 2 } [ 8 + 2 n - 4 ]{/tex}{tex}\\Rightarrow{/tex}\xa0an = 3 + (n - 1) (n + 2){tex}\\Rightarrow{/tex}\xa0an = 3 + n2 + n - 2{tex}\\Rightarrow{/tex}\xa0an = n2 + n + 1{tex}\\therefore{/tex}\xa0{tex}{S_n} = \\sum\\limits_{k = 1}^n {{a_{_k}}} = \\sum\\limits_{k = 1}^n {({k^{^2}}} + k + 1){/tex}= (12 + 1 + 1) + (22 + 2 + 1) + (32 + 3 + 1) + ...... +(n2 + n + 1)\xa0= (12 + 22 + 32 + ....... + n2) + (1 + 2 + 3 + ...... + n) + n\xa0{tex}= \\frac { n ( n + 1 ) ( 2 n + 1 ) } { 6 } + \\frac { n ( n + 1 ) } { 2 } + n{/tex}{tex}= n \\left[ \\frac { 2 n ^ { 2 } + 3 n + 1 + 3 n + 3 + 6 } { 6 } \\right]{/tex}{tex}= n \\left[ \\frac { 2 n ^ { 2 } + 6 n + 10 } { 6 } \\right]{/tex}{tex}= \\frac { n } { 3 } \\left( n ^ { 2 } + 3 n + 5 \\right){/tex}
1762.

If f(x)=x^2+2x+7

Answer» Domain = R Range = R
.
1763.

Differentiate (x-1/x)^2

Answer»
1764.

What is the result of{ 0 power 0 i.e. (0°) }????

Answer» Answer is not defined But sometimes we take it 1 as you see in your calculator (phone)
Answer is infinitive/ infinity/Not define
Answer is not 1
All you are wrong
1
1
1
1
1765.

Shapes

Answer»
1766.

(1+x)^101(1+x^3)^100 find cofficent of x^50

Answer»
1767.

Under root tan x + under root cot x integration

Answer»
1768.

What is HP give explain with examples please

Answer»
1769.

Find domain and range of the given function : 16-x

Answer» Domain = R Range = R
1770.

np5=42 np3 find value of n

Answer»
1771.

Find the value of tan 13pie/12

Answer»
1772.

Solve the equation -x^2+x-2=0

Answer» Ans .-1±√7/-2
1773.

Bnm

Answer» Kinetic energy
1774.

find the modulas and conjugate of complex no. 4+3i

Answer» Modulous = √16 +9=√25=5 And conjugate is __ ______Z. = 4 + 3i = 4 - 3i
But answeof modulas given in book is √7
_MODULUS_ Let z = 4 + 3i ( where a=4 , b=3) => |z| = |4+3i| => |z| = root (4^2 + 3^2) = root( 25) = 5Modulus = 5 ansConjugate = 4 - 3i ans
Modulas = 5, conjugate =4+3i
Mod 5Con 4-3i
Conjugate- 4-3iModulas- √7
1775.

n(A)=1,n(P(P(P(A))))=

Answer» Sorry ans is 16
8
( (1),(phi),phi )
2^4=16
1776.

Variance of first n natural Numbers

Answer»
1777.

Find per annum conpound anually when principle is 18000 and rate is 10% and year is 2 and have year

Answer»
1778.

5 properties of AP

Answer» Total 8 properties r their if want i will send u
2) If constant is subtracted from each term of AP ; the resulting sequence is also an AP
1) If constant is added to each term of AP; the resulting sequence is also an AP
1779.

Solution set of |x-1|

Answer» -1is true
1780.

Is important question are created in exam

Answer» Surely yes
Obviously
1781.

Sin4x / sin2x limit x- 0

Answer» 2
2 cos2x
1782.

A commitee of

Answer»
1783.

y= xcosx/sinx+cosx

Answer»
1784.

Cos510°cos330° + sin 390° cos120°= -1

Answer»
1785.

Sinx=15° value

Answer»
1786.

Bhang bhosada kaab bana

Answer» This is inappropriate ?
1787.

If X^2 -3x - 4

Answer» Thanks to all for help??
-infinity to -1
-1 to 4
(-infinity to -1)
1788.

Find the value of x if (x2

Answer»
1789.

(2_x)^5(3 2)

Answer»
1790.

what is the value of iota **iota means iota ki power iota ?

Answer» Iota is indicated by ii=✓-1i²=-1In a complex number: Z=X+iy,x,y€R X is called the real part and y ia is the imaginary part. i is the solution of the equation
1791.

Answer of half yearly paper

Answer»
1792.

Prove that cos10°+cos110°+cos130°=0

Answer» Use the formulacosC+cosD:2cos(C+D/2)cos(C-D/2)Use this in the question:2cos(10+110/2)cos(10-110/2)+cos130=02cos60°cos(-50°)+cos130°=02×1/2.cos50+cos130=0cos50+cos130=02cos(50+130/2)cos(50-130/2)=02cos90.cos40=02×0.cos40=00=0H.P
Thku
cos 10 + cos 110 + cos 130 = (cos 10 + cos 110) + cos 130=\xa0{tex}2cos \\frac{(110+10)}{2}\\times cos\\frac{(110-10)}{2}{/tex}\xa0+ cos 130 {using cos C + cos D}= {tex}2cos \\frac {(C+D)}{2}{/tex}{tex}\\times{/tex}{tex}cos\\frac {(C-D)}{2}{/tex}={tex}2cos\\frac{120}{2}{/tex}{tex}\\times{/tex}{tex}cos\\frac {100}{2}{/tex}+ cos (180 - 50) (As 130 = 180 - 50)= 2 cos 60 {tex}\\times{/tex} cos 50 - cos 50 (Using cos (180 - A) = - cos A)= 2 {tex}\\times{/tex}{tex}\\frac{1}{2}{/tex}{tex}\\times{/tex} cos 50 - cos 50 ( As cos 60 = {tex}\\frac{1}{2}{/tex})= cos 50o - cos 50o = 0
1793.

Find square root of i

Answer» -1
-1
-1
R= { (x,y): x,y € W x square + y square = 25
1794.

Allied angle

Answer» Gfyb
1795.

Prove that cos6x=32cos6 x-48cos4 +18cos2 x-1

Answer» LHS =\xa0{tex}\\frac { 1 + \\sin \\theta - \\cos \\theta } { 1 + \\sin \\theta + \\cos \\theta }{/tex}=\xa0{tex}\\frac { ( 1 - \\cos \\theta ) + \\sin \\theta } { ( 1 + \\cos \\theta ) + \\sin \\theta }{/tex}\xa0=\xa0{tex}\\frac { 2 \\sin ^ { 2 } \\frac { \\theta } { 2 } + 2 \\sin \\frac { \\theta } { 2 } \\cdot \\cos \\frac { \\theta } { 2 } } { 2 \\cos ^ { 2 } \\frac { \\theta } { 2 } + 2 \\sin \\frac { \\theta } { 2 } \\cdot \\cos \\frac { \\theta } { 2 } }{/tex}[{tex}\\because{/tex}\xa0sin2x =\xa0{tex}\\frac { 1 - \\cos 2 x } { 2 } \\Rightarrow{/tex}\xa0{tex}2 sin^2x = 1 - cos 2x{/tex}\xa0and {tex}2sin^2\xa0\\frac{x}{2}\xa0= 1 - cosx{/tex}\xa0and {tex}2 cos^2{/tex}\xa0{tex}\\frac { x } { 2 }{/tex}\xa0{tex}= 1 + cosx{/tex} and {tex}sinx = 2sin{/tex}\xa0{tex}\\frac { x } { 2 }{/tex}\xa0{tex}\\times{/tex}\xa0{tex}cos{/tex}\xa0{tex}\\frac { x } { 2 }{/tex}]=\xa0{tex}\\frac { \\sin ^ { 2 } \\frac { \\theta } { 2 } + \\sin \\frac { \\theta } { 2 } \\cdot \\cos \\frac { \\theta } { 2 } } { \\cos ^ { 2 } \\frac { \\theta } { 2 } + \\sin \\frac { \\theta } { 2 } \\cdot \\cos \\frac { \\theta } { 2 } } = \\frac { \\sin \\frac { \\theta } { 2 } \\left[ \\sin \\frac { \\theta } { 2 } + \\cos \\frac { \\theta } { 2 } \\right] } { \\cos \\frac { \\theta } { 2 } \\left[ \\cos \\frac { \\theta } { 2 } + \\sin \\frac { \\theta } { 2 } \\right] }{/tex}=\xa0{tex}\\frac { \\sin \\frac { \\theta } { 2 } } { \\cos \\frac { \\theta } { 2 } }{/tex}\xa0= tan\xa0{tex}\\frac { \\theta } { 2 }{/tex}\xa0= RHS{tex}\\therefore{/tex}\xa0LHS = RHSHence proved.
1796.

Latitude practical of mathematicsComplete portion

Answer»
1797.

Find n...

Answer»
1798.

What is mathematics? Whay do we study? Why cant we kill it????????

Answer» Wait,,if you think then you realise that how it is important
1799.

What is the rank of the word RAM?

Answer» 5th rank
1800.

What is signum function

Answer»