This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 26351. |
What is biological oxygen demand? |
|
Answer» Biological Oxygen Demand (BOD), represents the amount of oxygen needed by aerobic bacteria to decompose the waste. |
|
| 26352. |
What is the percentage of oxygen in atmosphere? |
|
Answer» Oxygen is found in the elemental form in the atmosphere to the extent of nearly 21 % |
|
| 26353. |
Why oxygen is an essential component of earth? |
|
Answer» Oxygen is also an essential component of most biological molecules like carbohydrates, proteins, nucleic acids, and fats. |
|
| 26354. |
Define nitrification. |
|
Answer» Nitrification: It is the conversion of nitrates into ammonia by the denitrifying bacteria in the soil. |
|
| 26355. |
What is nitrogen fixation? |
|
Answer» Nitrogen fixation: It is the conversion of atmospheric nitrogen gas into ammonium and nitrates. |
|
| 26356. |
What is nitrogen cycle? |
|
Answer» Nitro gen cycle: In this cycle nitrogen is converted from its inert atmospheric molecular form (N2) into a form that is useful in biological processes. |
|
| 26357. |
What is water cycle or hydrological cycle? |
|
Answer» Water cycle or Hydrological cycle: It ¡s a process of constantly recycling water. |
|
| 26358. |
What was the montreal agreement? |
|
Answer» The Montreal agreement in 1987 was to control and phase out the production and supply of ozone-depleting chemicals specifically chlorofluorocarbons (CFCs). |
|
| 26359. |
Match the following. 1. Morarji Desai — a) Telecom revolution2. V.P. Singh — b) First non-cong ress Prime Minister 3. Rajiv Gandhi — c) Mandal commission A) 1-b, 2-c, 3-a B) 1-c, 2-b, 3-a C) 1-a, 2-b, 3-c D) 1-a, 2-c, 3-b |
|
Answer» A) 1-b, 2-c, 3-a |
|
| 26360. |
पोलैण्ड में ‘लेनिन जहाज कारखाना’ के मजदूरों ने कब हड़ताल की? |
|
Answer» पोलैण्ड में ‘लेनिन जहाज कारखाना’ के मजदूरों ने 14 अगस्त, 1980 ई. को हड़ताल की। |
|
| 26361. |
सार्वभौमिक वयस्क मताधिकार किसे कहते हैं? |
|
Answer» एक विशेष आयु प्राप्त करने पर किसी देश में सभी नागरिकों को बिना किसी प्रकार के भेदभाव के मतदान (वोट) करने का अधिकार दे दिया जाए तो उस प्रणाली को सार्वभौमिक वयस्क मताधिकार कहते हैं। |
|
| 26362. |
कूप (Coup) किसे कहते हैं? |
|
Answer» जब किसी सरकार को अचानक गैर-कानूनी ढंग से हटा दिया जाता है तो उसे कूप कहते हैं। |
|
| 26363. |
Factorize each of the following algebraic expressions:a2 + 3a – 88 |
|
Answer» As given, a2 + 3a – 88 = a2 + 3a – 88 = a2 + 11a – 8a – 88 = a (a + 11) – 8 (a + 11) = (a – 8) (a + 11) |
|
| 26364. |
Factorize each of the following algebraic expressions: a2 – 14a – 51 |
|
Answer» We have, a2 – 14a – 51 = a2 – 14a – 51 = a2 + 3a – 17a – 51 = a (a + 3) – 17 (a + 3) = (a – 17) (a + 3) |
|
| 26365. |
Factorize:x2-y2-4xz+4z2 |
|
Answer» Given, x2 – y2 - 4xz + 4z2 = x2 – 4xz +4z2 – y2 = (x)2 - 2×x×2z+(2z)2 – y2 = (x-2z)2 – y2 = (x - 2z - y) (x – 2z + y) = (x – y – 2z) (x + y – 2z) |
|
| 26366. |
Factorize: x2-y2-4xz+4z2 |
|
Answer» Given, x4+x2y2+y4 = x4+2x2y2+y4 – x2y2 = (x2y2)2 – (xy)2 = (x2+ y2 – xy) (x2+ y2 + xy) |
|
| 26367. |
Factorize:4(x-y)2-12(x-y)(x+y)+9(x+y)2 |
|
Answer» Given, 4(x-y)2 -12(x-y)(x+y)+9(x+y)2 = 4(x2-2xy+y 2)-12(x2 – y2)+9(x2+y2+2xy) = 4x2-8xy+4y2-12x2+12y2+9x2+9y+18xy = x2+25y2+10xy = (x)2+(5y)2+2×x×5y = (x+5y)2 |
|
| 26368. |
Factorize: x4+x2y2+y4 |
|
Answer» Given, x4+x2y2+y4 = x4+2x2y2+y4 – x2y2 = (x2y2)2 – (xy)2 = (x2+ y2 – xy) (x2+ y2 + xy) |
|
| 26369. |
Factorize: a2+4b2-4ab-4c2 |
|
Answer» Given, a2 +4b2-4ab-4c2 = (a)2+ (2b)2 – 2×a×2b-4c2 = (a-2b)2 – (2c)2 = (a-2b-2c)(a-2b+2c) |
|
| 26370. |
Give possible expressions for the length and breadth of the rectangle having 35y2+13y-12 as its area. |
|
Answer» We know that, Area of rectangle = length × breadth Given, 35y2 + 13y – 12 = 35y2 + 28y – 15y -12 = 7y(5y+4) -3 (5y + 4) = (7y – 3) (5y + 4) Thus, Length = (7y – 3), then breadth = (5y + 4) Length = (5y + 4), then breadth = (7y – 3) |
|
| 26371. |
Factorize: a2-b2+2ab-c2 |
|
Answer» Given, a2-b2+2ab-c2 = a2-(b2-2bc+c2) = a – (b-c)2 = (a + (b-c)) (a-(b-c)) = (a+b-c) (a-b+c) |
|
| 26372. |
Factorize each of the following expressions:64a3-b3 |
|
Answer» Given, 64a3 - b3, = (4a)3 - (b)3 = (4a - b) (16a2 + b2 + 4ab) |
|
| 26373. |
Factorize each of the following expressions:8x3y3+27a3 |
|
Answer» Given, 8x3 y3 +27a 3, = (2xy)3 + (3a)3 = (2xy + 3a) (4x2 y2 + 9a2 – 6axy) |
|
| 26374. |
Factorize each of the following expressions:1-27a3 |
|
Answer» Given, 1 – 27a3, = 1 – (3a)3 = (1 – 3a) (1+9a2+3a) |
|
| 26375. |
Factorize each of the following expressions:y3+125 |
|
Answer» Given, y3+125, = y3 + (5)3 [∵ a3+b3 = (a+b)(a2 – 2ab +b2) = (y + 5) (y2 – 5y + 25) |
|
| 26376. |
Factorize each of the following expressions:p3+27 |
|
Answer» Given, P3+27, = p3 + (3)3 [∵ a3+b3 = (a+b)(a2 – 2ab +b2)] = (p + 3) (p2 + 9 – 3p) |
|
| 26377. |
Factorize: 6ab-b2+12ac-2bc |
|
Answer» Given, 6ab-b2+12ac-2bc = b(6a-b)+2c(6a-b) = (b+2c)(6a-b) |
|
| 26378. |
Factorize each of the following expressions:8x2y3-x5 |
|
Answer» Given, 8x2y3 – x5 = x2 (8y3 – x3) = x2 { (2y)2 – (x)3} = x2 (2y - x) (4y2 + x2 + 2xy) |
|
| 26379. |
Factorize each of the following expressions:(x+2)3+(x-2)3 |
|
Answer» Given, (x + 2)3 + (x - 2)3 = (x + 2 + x - 2) { (x + 2)2 + (x - 2)2 – (x + 2)(x - 2)} = 2x (x2 + 4 + 4x + x2 + 4 – 4x – x2 + 4) = 2x (x2 +12) |
|
| 26380. |
Factorize each of the following expressions:(a+b)3-8(a-b)3 |
|
Answer» Given, (a + b)3 – {2(a – b)}3 = {(a + b) –2(a - b)} { (a+b)2 +4(a-b)2 +2(a+b)(a - b)} [ By using: x3 - y3 = (x - y)(x2 + y2 +xy) = (a + b – 2a + 2b)(a2 + b2 + 2ab + 4a2 +4b2 – 8ab + 2a2 – 2b2) = (3b – a) (7a 2 +3b 2 - 6ab) |
|
| 26381. |
Factorize each of the following expressions:32a2+108b3 |
|
Answer» Given, 32a3+108b3, = 4 (8a3+27b3) = 4 { (2a)3 + (3b)3 } = 4 (2a + 3b) (4a2 +9b2 – 6ab) |
|
| 26382. |
Factorize each of the following expressions:54x6y+2x3y4 |
|
Answer» Given, 54x6 y + 2x3 y4, = 2x3 y (27x3 + y3) = 2x3 y {(3x)3 + (y)3} = 2x3 y (3x + y) (9x2 + y2 – 3xy) |
|
| 26383. |
Factorize each of the following algebraic expressions: 4(xy + 1)2 – 9(x – 1)2 |
|
Answer» As given, 4(xy + 1)2 – 9(x – 1)2 = [2x (xy + 1)]2 – [3 (x – 1)]2 = (2xy + 2 + 3x – 3) (2xy + 2 – 3x + 3) = (2xy + 3x – 1) (2xy – 3x + 5) |
|
| 26384. |
Factorize each of the following algebraic expressions: a2 + 2a – 3 |
|
Answer» We have, a2 + 2a – 3 a2 + 2a – 3 = a2 + 3a – a – 3 = a (a + 3) – 1 (a + 3) = (a – 1) (a + 3) |
|
| 26385. |
Factorize each of the following algebraic expressions: x2 – 11x – 42 |
|
Answer» We have, x2 – 11x – 42 = x2 – 11x – 42 = x2 + 3x – 14x – 42 = x (x + 3) – 14 (x + 3) = (x – 14) (x + 3) |
|
| 26386. |
Factorize each of the following expressions:\(\frac{\text{x}^{3}}{216}-8\text{y}^{3}\) |
|
Answer» Given, \(\frac{\text{x}^{3}}{216}-8\text{y}^{3}=(\frac{\text{x}}{6})^{3}\,-(2\text{y})^{3}\) = \((\frac{\text{x}}{6}-2\text{y})(\frac{\text{x}^{2}}{36}+4\text{y}^{2}+\frac{\text{xy}}{3})\) |
|
| 26387. |
The factors of a2 - 1 - 2x - x2 areA. (a - x + 1)(a - x - 1) B. (a + x - 1)(a - x + 1) C. (a + x + 1)(a - x - 1) D. none of these |
|
Answer» We have, \(=a^{2}-1-2\text{x}-\text{x}^{2}\) \(=a^{2}-(1+2\text{x}+\text{x}^{2})\) \(=a^{2}-(1+\text{x})^{2}\) \(=(a-1-\text{x})(a+1+\text{x})\) \([a^{2}-b^{2}=(a+b)(a-b)]\) Thus, the factors of \(a^{2}-1-2\text{x}-\text{x}^{2}\,are \,(a-1-\text{x})(a+1+\text{x}).\) |
|
| 26388. |
Factorize: (x+2)(x2+25)-10x2-20x |
|
Answer» Given, (x+2) (x2+25) - 10x2 - 20x = (x+2) (x2+25)-10x (x+2) = (x+2) (x2+25-10x) = (x+2) (x-5)2 |
|
| 26389. |
Factorize:10x4 y – 10xy4 |
|
Answer» 10x4 y – 10xy4 = 10xy(x3 − y3) [a3 – b3 = (a – b)(a2 + ab + b2)] = 10xy (x−y)(x2 + xy + y2) Therefore, 10x4y – 10xy4 = 10xy (x−y)(x2 + xy + y2) |
|
| 26390. |
Factorize: (x + 2) (x2 + 25 ) – 10x2 – 20x. |
|
Answer» (x + 2) (x2 + 25) – 10x (x + 2) Take (x + 2 ) as common factor; = (x + 2)(x2 + 25 – 10x) = (x + 2) (x2 – 10x + 25) Expanding the middle term of (x2 – 10x + 25 ) = (x + 2) (x2 – 5x – 5x + 25) = (x + 2){x(x – 5) – 5( x – 5)} = (x + 2)(x – 5)(x – 5) = (x + 2)(x – 5)2 Therefore, (x + 2) (x2 + 25) – 10x(x + 2) = (x + 2)(x – 5)2. |
|
| 26391. |
Factorize each of the following algebraic expressions:x2 – 4x – 21 |
|
Answer» As given, x2 – 4x – 21 By considering, p+q = -4 and pq = -21 So we can replace -4x by 3x – 7x -21 by 3 × -7 x2 + 4x – 21 = x2 + 3x – 7x – 21 = x (x + 3) – 7 (x + 3) = (x – 7) (x + 3) |
|
| 26392. |
Factorize each of the following expressions:(i) 6xy + 6 – 9y – 4x(ii) x2 – 2ax – 2ab + bx(iii) x3 – 2x2y + 3xy2 – 6y3 |
|
Answer» (i) 6xy + 6 – 9y – 4x = 6xy – 4x – 9y + 6 = 2x (3y – 2) – 3 (3y – 2) = (2x – 3) (3y – 2) (ii) x2 – 2ax – 2ab + bx = x2 + bx – 2ax – 2ab = x (x + b) – 2a (x + b) = (x – 2a) (x + b) (iii) x3 – 2x2y + 3xy2 – 6y3 = x3 + 3xy2 – 2x2y – 6y3 = x (x2 + 3y2) – 2y (x2 + 3y2) = (x – 2y) (x2 + 3y2) (iv) abx2 + (ay – b) x – y = abx2 – ayx – bx – y = abx2 – bx – ayx – y = bx (ax – 1) + y (ax – 1) = (bx + y) (ax – 1) |
|
| 26393. |
Factorize each of the following expressions:(i) a (a + b – c) – bc(ii) x2 – 11xy – x + 11y(iii) ab – a – b + 1 |
|
Answer» (i) a (a + b – c) – bc = a2 + ab – ac – bc = a (a + b) – c (a + b) = (a + b) (a – c) (ii) x2 – 11xy – x + 11y = x2 – x – 11xy + 11y = x (x – 1) – 11y (x – 1) = (x – 11y) (x – 1) (iii) ab – a – b + 1 = a (b – 1) – 1 (b – 1) = (a – 1) (b – 1) |
|
| 26394. |
Factorize:a2x2+(ax2+1)x+a |
|
Answer» Given, a2x2 + (ax2+1)x + a = a2x2 + ax3 + x + a = ax2(a + x) + 1(x + a) = (ax2 + 1)(x + a) |
|
| 26395. |
Factorize each of the following expressions:(i) (ax + by)2 + (bx – ay)2(ii) 16 (a – b)3 – 24 (a – b)2(iii) ab (x2 + 1) + x (a2 + b2)(iv) a2x2 + (ax2 + 1)x + a(v) a (a – 2b – c) + 2bc |
|
Answer» (i) (ax + by)2 + (bx – ay)2 = a2x2 + b2y2 + 2axby + b2x2 + a2y2 – 2axby = a2x2 + b2y2 + b2x2 + a2y2 = a2x2 + a2y2 + b2y2 + b2x2 = a2 (x2 + y2) + b2 (x2 + y2) = (a2 + b2) (x2 + y2) (ii) 16 (a – b)3 – 24 (a – b)2 = 8 (a – b)2 [2 (a – b) – 3] = 8 (a – b)2 (2a – 2b – 3) (iii) ab (x2 + 1) + x (a2 + b2) = abx2 + ab + xa2 + xb2 = abx2 + xa2 + ab + xb2 = ax (bx + a) + b (bx + a) = (ax + b) (bx + a) (iv) a2x2 + (ax2 + 1)x + a = a2x2 + ax3 + x + a = ax2 (a + x) + 1 (x + a) = (x + a) (ax2 + 1) (v) a (a – 2b – c) + 2bc = a2 – 2ab – ac + 2bc = a (a – 2b) – c (a – 2b) = (a – 2b) (a – c) |
|
| 26396. |
Factorize each of the following expressions:ax + ay – bx – by |
|
Answer» We have, ax + ay – bx – by = a(x + y) –b (x + y) = (a – b) (x + y) |
|
| 26397. |
Factorize:ax2y + bxy2 + cxyz |
|
Answer» Given, ax2y + bxy2 + cxyz = xy (ax + by + cz) |
|
| 26398. |
Factorize: a2x2 + (ax2 + 1)x + a |
|
Answer» a2x2 + (ax2 + 1)x + a = a2x2 + a + (ax2 + 1)x = a(ax2 + 1) + x(ax2 + 1) = (ax2 + 1) (a + x) |
|
| 26399. |
Find the radius of a circle whose circumference is equal to the sum of the circumferences of two circles of radii 15 cm and 18 cm. |
|
Answer» Radius of first circle = r1 = 15 cm Radius of second circle = r2 = 18 cm ∴ Circumference of first circle = 2πr1 = 30π cm Circumference of second circle = 2πr2 = 36π cm Let the radius of the circle = R According to the question, Circumference of circle = Circumference of first circle + Circumference of second circle 2πR= 2πr1+ 2πr2 ⇒ 2πR = 30π + 36π ⇒ 66π ⇒ R = 33 ⇒ Radius = 33 cm Hence, required radius of a circle is 33 cm. |
|
| 26400. |
Circumference of two circles are equal. Is it necessary that their areas be equal? Why? |
|
Answer» True We are given that Circumference of circle with radius R1 = Circumference of circle with radius R2 ⇒ 2πR1= 2πR2 ⇒ R1= R2 ⇒ π(R1)2 = π(R2)2 and hence the areas are also equal. |
|