This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
II. 39b2 - 624b = 01). a < b2). a > b3). a ≤ b4). a ≥ b |
|
Answer» I. a2 + 18a + 56 = 0 ⇒ a2 + 14a + 4a + 56 = 0 ⇒ a(a + 14) + 4(a + 14) = 0 ⇒ (a + 14) (a + 4) = 0 Then, a = (-4) or a = (-14) II. 39b2 - 624b = 0 ⇒ 39b(b - 16)0 ⇒ (b) (b - 16) = 0 Then, b = (0) or b = 16 So, when a = (-4), a < b for b = (16) and a < b for b = 0 And when a = (-14), a < b for b = (16) and a < b for b = 0 ∴ we can observe that a < b. |
|
| 2. |
II. 3y2 + 20y + 33 = 01). If x > y2). If x < y3). If x ≥ y4). If x ≤ y |
|
Answer» ⇒ 2x2 + 4x + 5X + 10 = 0 ⇒ 2x(x + 2) + 5(x + 2) = 0 ⇒ (2x + 5)(x + 2) = 0 x = -5/2, -2 3y2 + 20y + 33 = 0 ⇒ 3y2 + 9Y + 11y + 33 = 0 ⇒ 3y(y + 3) + 11(y + 3) = 0 ⇒ (3y + 11)(y + 3) = 0 y = -11/3, -3 Thus, x = -5/2, -2 and y = -11/3, -3 Comparing these values of x and y, we get x > y |
|
| 3. |
1). 3002). 3803). 4004). Cannot be determined |
|
Answer» ⇒ Let the original number of CHILDREN be x ⇒ 2400 / (x – 100) – 2400 / x = 2 ⇒ (2400x - 2400x + 240000)/x² - 100X = 2 ⇒ 240000 = 2x² – 200x ⇒ 120000 = x² – 100x ⇒ 400(400 – 100) = x(x – 100) ∴ x = 400 |
|
| 4. |
1). If x > y2). If x < y3). If x ≥ y4). If x ≤ y |
|
Answer» I. 3x2 + 32x + 85 = 0 ⇒ 3x2 + 15x + 17x + 85 = 0 ⇒ 3x(x + 5) + 17(x + 5) = 0 ⇒ (x + 5) (3x + 17) ∴ x = -5, -17/3 II. 2y2 + 19y + 45 = 0 ⇒ 2y2 + 10Y + 9y + 45 = 0 ⇒ 2y(y + 5) + 9(y + 5) = 0 ⇒ (y + 5) (2y + 9) = 0 ∴ y = -5, -9/2 When x = -5, for y = -5, x = y and for y = -9/2, x < y When x = -17/3, for y = -5, x < y and for y = -9/2, x < y ∴ x ≤ y |
|
| 5. |
II. 4b2 - 9b + 2 = 01). a < b2). a > b3). a ≤ b4). a ≥ b |
|
Answer» I. 8a2 - 6a + 1 = 0 ⇒ 4a(2a - 1) - 1(2a - 1) = 0 ⇒ (4a - 1) (2a - 1) = 0 Then, a = 1/4 or a = 1/2 II. 4b2 - 9b + 2 = 0 ⇒ 4b2 - 8b - b + 2 = 0 ⇒ 4b(b - 2) - 1(b - 2) = 0 ⇒ (4b - 1) (b - 2) = 0 Then, b = (1/4) or b = 2 So, when a = (1/4), a = b for b = (1/4) and a < b for b = 2 And when a = (1/2), a > b for b = (1/4) and a < b for b = 2 ∴ the relationship cannot be determined. |
|
| 6. |
II. y2 + 22y + 112 = 01). x < y2). x > y3). x = y OR the relationship cannot be determined4). x ≥ y |
|
Answer» I. x2 – 18X – 115 = 0 ⇒ x2 – 23x + 5x – 115 = 0 ⇒ x(x – 23) + 5(x – 23) = 0 ⇒ (x – 23)(x + 5) = 0 Then, x = + 23 or x = - 5 II. y2 + 22y + 112 = 0 ⇒ y2 + 14y + 8y + 112 = 0 ⇒ y(y + 14) + 8(y + 14) = 0 ⇒ (y + 14)(y + 8) = 0 Then, y = - 14 or y = - 8 So, when x = + 23, x > y for y = - 14 and x > y for y = - 8 And when x = - 5, x > y for y = - 14 and x > y for y = - 8 ∴ So, we can clearly observe that x > y. |
|
| 7. |
1). x < y2). x > y3). x = y4). x ≥ y |
|
Answer» I. 10x2 + 37X + 7 = 0 ⇒ 10x2 + 35X + 2x + 7 = 0 ⇒ 5x(2x + 7) + 1(2x + 7) = 0 ⇒ (2x + 7)(5x + 1) = 0 Then, x = - 7/2 or x = - 1/5 ⇒ 5y2 – 15y + y – 3 = 0 ⇒ 5y(y – 3) + 1(y – 3) = 0 ⇒ (y – 3)(5y + 1) = 0 Then, y = + 3 or y = - 1/5 So, when x = - 7/2, x < y for y = + 3 and x < y for y = - 1/5 And when x = - 1/5, x < y for y = + 3 and x = y for y = - 1/5 ∴ So, we can clearly observe that x ≤ y. |
|
| 8. |
II. 35y2 + 48y - 27 = 01). x > y2). x < y3). x ≥ y4). x ≤ y |
|
Answer» I. 4x2 + 4√3x + 3 = 0 ⇒ 4x2 + 2√3x + 2√3x + 3 = 0 ⇒ 2x(2x + √3) + √3(2x + √3) = 0 ⇒ (2x + √3)2 = 0 ∴ x =-√3/2 II. 35y2 + 48y - 27 = 0 ⇒ 35y2 + 63y - 15Y - 27 = 0 ⇒ (5y + 9)(7y - 3) = 0 ∴ y =-9/5 or y = 3/7 If x = -√3/2, x > y for y = -9/5 If x = -√3/2, x < y for y = 3/7 ∴ This shows that relationship cannot be ESTABLISHED between x and y |
|
| 9. |
II. y2 + 76y + 1444 = 01). if x > y2). if x ≥ y3). if x < y 4). if x ≤ y |
|
Answer» ⇒ x2 + 37x + 38x + 1406 = 0 ⇒ (x + 37) (x + 38) = 0 ⇒ x = -37 or -38 II. y2 + 76y + 1444 = 0 ⇒ y2 + 38y + 38y + 382 = 0 ⇒ (y + 38)2 = 0 ⇒ y + 38 = 0 ⇒ y = -38 When x = -37, x > y for y = -38 And when x = -38, x = y for y = -38 ∴ x ≥ y |
|
| 10. |
II. 30b2 + 56b + 10 = 01). a < b2). a > b3). a ≤ b4). a ≥ b |
|
Answer» I. 16a2 - 52a + 22 = 0 ⇒ 16a2 - 8a - 44a + 22 = 0 ⇒ (8a - 22) (2a - 1) = 0 Then, a = 22/8 or a = 1/2 II. 30b2 + 56b + 10 = 0 ⇒ 30b2 + 6B + 50b + 10 = 0 ⇒ 6b(5b + 1) + 10(5b + 1) = 0 ⇒ (6b + 10) (5b + 1) = 0 Then, b = (-10/6) or b = (-1/5) So, when a = (22/8), a > b for b = (-10/6) and a > b for b = (-1/5) And when a = (1/2), a > b for b = (-10/6) and a > b for b = (-1/5) ∴ we can observe that a > b. |
|
| 11. |
1). 722). 63). 364). 9 |
|
Answer» Let the NUMERATOR and denominator be X and y. $(\Rightarrow \frac{{x + 8}}{y} - \frac{x}{y} = \frac{4}{9})$ ⇒ 8 × 9 = 4y ⇒ y = 18 ∴ Denominator of a FRACTION is 18. |
|
| 12. |
1). x < y2). x > y3). x = y OR the relationship cannot be determined.4). x ≤ y |
|
Answer» I. x2 – 12x + 35 = 0 ⇒ x2 – 5X – 7x + 35 = 0 ⇒ x(x – 5) – 7(x – 5) = 0 ⇒ (x – 7) (x – 5) = 0 ⇒ x = 7 OR x = 5 ⇒ y2 – 7y – 9y + 63 = 0 ⇒ y (y – 7) – 9(y – 7) = 0 ⇒ (y – 9) (y – 7) = 0 ⇒ y = 9 OR y = 7 So, when x = + 7, x = y when y = 7 and x < y when y = 9. And when x = 5, x < y when y = 7 and x < y when y = 9. ∴ x ≤ y. |
|
| 13. |
1). x < y2). x > y3). x = y OR the relationship cannot be determined4). x ≥ y |
|
Answer» I. x2 – 5X – 24 = 0 ⇒ x2 – 8x + 3x – 24 = 0 ⇒ x(x – 8) + 3(x – 8) = 0 ⇒ (x – 8)(x + 3) = 0 Then, x = + 8 or x = - 3 II. y2 – 8y – 33 = 0 ⇒ y2 – 11y + 3y – 33 = 0 ⇒ y(y – 11) + 3(y – 11) = 0 ⇒ (y – 11)(y + 3) = 0 Then, y = + 11 or y = - 3 So, when x = + 8, x < y for y = + 11 and x > y for y = - 3 And when x = - 3, x < y for y = + 11 and x = y for y = - 3 ∴ So, we can observe that no clear RELATIONSHIP cannot be determined between x and y. |
|
| 14. |
Shyam bought 5 kg of fruits (guava and kiwi) for Rs 180.The cost per kg of guava was Rs 60 and that of kiwi was Rs 20 per kg.Find the quantity of guava and kiwi (respectively) purchased1). 2 kg, 3kg2). 3 kg, 2 kg3). 4 kg, 1 kg4). 1 kg, 4 Kg |
|
Answer» LET the QUANTITY of guava purchased be ‘g’ and kiwi be ‘k’ ACCORDING to the question, ⇒ g + k = 5----(1) ⇒ 60g + 20k = 180----(2) Solving (1) and (2), we get Multiplying equation(1) by 20 ⇒ 20g + 20k = 100----(3) ⇒ 60g + 20k = 180----(4) Substracting equation(3) from equation(4) ⇒ 40g = 80 ∴ g = 2 KG and k = 3 kg |
|
| 15. |
1). x< y2). x> y3). x = y OR the relationship cannot be determined4). x ≥ y |
|
Answer» I. 2x2 – 7x + 5 = 0 ⇒ 2x2 – 5X – 2x + 5 = 0 ⇒ x(2x – 5) – 1(2x – 5) = 0 ⇒ (2x – 5)(x – 1) = 0 Then, x = + 5/2 or x = + 1 ⇒ 2y2 – 2y – y + 1 = 0 ⇒ 2y(y – 1) – 1(y – 1) = 0 → (y – 1)(2y – 1) = 0 Then, y = + 1 or y = + ½ So, when x = + 5/2, x > y for y = + 1 and x > y for y = + ½ And when x = + 1, x = y for y = + 1 and x > y for y = + ½ ∴ So, we can clearly observe that x ≥ y. |
|
| 16. |
The sum of the ages of a Father and son is 38 years, Four years ago the product of their ages was 3 times the father’s age at that time. The present age of the Father and son, respectively are1). 28 years, 10 years2). 32 years, 6 years3). 31 years, 7 years4). 34 years, 4 years |
|
Answer» Let’s assume that present age of FATHER is X and age of son is Y ∴ Sum of their present ages = X + Y = 38 Four YEARS ago the age of Father was = X – 4 Four years ago the age of son was = Y – 4 ? Four years ago the product of their ages was 3 times the father’s age at that time ∴ (X – 4) × (Y – 4) = 3 (X – 4) ⇒ Y – 4 = 3 ⇒ Y = 7 ∴ present age of son is = 7 YRS & present age of Father is = 38 – 7 = 31 yrs |
|
| 17. |
II. y2 + 31y – 140 = 01). x < y2). x > y3). x = y OR the relationship cannot be determined4). x ≥ y |
|
Answer» I. x2 + 22x – 104 = 0 ⇒ x2 + 26x – 4X – 104 = 0 ⇒ x(x + 26) – 4(x + 26) = 0 ⇒ (x + 26)(x – 4) = 0 Then, x = - 26 or x = + 4 II. y2 + 31y – 140 = 0 ⇒ y2 + 35Y – 4y – 140 = 0 ⇒ y(y + 35) – 4(y + 35) = 0 ⇒ (y + 35)(y – 4) = 0 Then, y = - 35 or y = + 4 So, when x = - 26, x > y for y = - 35 and x < y for y = + 4 And when x = + 4, x > y for y = - 35 and x = y for y = + 4 ∴ So, we can observe that no clear RELATIONSHIP cannot be determined between x and y. |
|
| 18. |
Number obtained by interchanging the digits of a two digit number is less than the original number by 54, and the sum of the digit if 8. What is original two digit number?1). 622). 173). 714). 35 |
|
Answer» Let the unit digit of number be X and tenth digit be y Then, Number = 10y + x Number OBTAINED by reversing its digits = 10x + y Number obtained by interchanging the digits of a two digit number is less than the original number by 54 ∴ (10y + x) – (10x + y) = 54 ⇒ 9y – 9x = 54 ⇒ y – x = 6----EQ (1) Sum of the digits of the number = 8 ∴ y + x = 8----eq (2) By adding eq (1) and eq (2), we get 2y = 14 ⇒ y = 7 By putting this VALUE of y in eq(2), we get 7 + x = 8 ⇒ x = 1 ∴ Original two digit number = (10 × 7) + 1 = 71 |
|
| 19. |
II. 20y2 – 41y + 20 = 01). x > y2). x ≥ y3). x< y4). x ≤ y |
|
Answer» We will SOLVE both the equations separately. Equation I: 12x2 – x – 1 = 0 ⇒ 12x2 – 4X + 3x – 1 = 0 ⇒ 4x(3x – 1) + 1(3x – 1) = 0 ⇒ (4x + 1) (3x – 1) = 0 ⇒ x = -(1/4) = - 0.25 Or, x = 1/3 = 0.33 Equation II: 20y2 – 41y + 20 = 0 ⇒ 20y2 – 25Y – 16y + 20 = 0 ⇒ 5y (4y – 5) – 4(4y – 5) = 0 ⇒ (5y – 4) (4y – 5) = 0 ⇒ y = 4/5 = 0.8 or y = 5/4 = 1.25 Comparing the VALUES of x and y we get, x < y |
|
| 20. |
II. y3 – \(\frac{{\left( {3\;\times \;8} \right)\frac{9}{2}}}{{y\sqrt y }}\) = 01). if x > y2). if x ≥ y3). if x < y4). if x ≤ y |
|
Answer» I. $(\frac{{17}}{{\sqrt X }} = \sqrt x - \frac{7}{{\sqrt x }} = 0)$ ⇒ $(\frac{{17}}{{\sqrt x }})$ + $(\frac{7}{{\sqrt x }} = \sqrt x)$ ⇒ $(\frac{{17\; + \;7}}{{\sqrt x }})$ = √x ⇒ 24 = x II. y3 – $(\frac{{\left( {3\; \times \;8} \right)\frac{9}{2}}}{{y\sqrt y }})$ = 0 ⇒ y9/2 = 249/2 ⇒ y = 24 When x = 24, x = y for y = 24 ∴ x = y |
|
| 21. |
II. 10y2 - 29y + 21 = 01). if x < y2). if x > y3). if x ≤ y4). if x ≥ y |
|
Answer» x2 + 91 = 20x Solving we get, x = 7, 13 10y2 - 29y + 21 = 0 Solving we get, y = 7/5, 3/2 So x is GREATER than y So 2 is the correct option |
|
| 22. |
II. y2 – 14y + 45 = 01). x < y2). x > y3). x = y OR the relationship cannot be determined4). x ≥ y |
|
Answer» ⇒ x2 + 24x – 5x – 120 = 0 ⇒ x(x + 24) – 5(x + 24) = 0 ⇒ (x + 24)(x – 5) = 0 Then, x = - 24 or x = + 5 II. y2 – 14y + 45 = 0 ⇒ y2 – 9Y – 5y + 45 = 0 ⇒ y(y – 9) – 5(y – 9) = 0 ⇒ (y – 9)(y – 5) = 0 Then, y = + 9 or y = + 5 So, when x = - 24, x < y for y = + 9 and x < y for y = + 5 And when x = + 5, x < y for y = + 9 and x = y for y = + 5 ∴ So, we can observe that x ≤ y. |
|
| 23. |
1). if x > y2). if x ≥ y3). if x < y4). if x ≤ y |
|
Answer» I. ?X = 3 ⇒ x = 33 ∴ x = 27 II. Y2 – 729 = 0 ⇒ Y2 = 729 ⇒ y = 27 or y = -27 When x = 27, x = y for y = 27 and x > y for y = -27 ∴ x ≥ y |
|
| 24. |
II. b2 + 54b + 53 = 01). a < b2). a > b3). a ≤ b4). a ≥ b |
|
Answer» I. a2 - 61A + 424 = 0 ⇒ a2 - 53a - 8a + 424 = 0 ⇒ a(a - 53) - 8(a - 53) = 0 ⇒ (a - 8) (a - 53) = 0 Then, a = 53 or a = 8 II. b2 + 54B + 53 = 0 ⇒ b2 + 53b + b + 53 = 0 ⇒ b(b + 53) + 1(b + 53) = 0 ⇒ (b + 1) (b + 53) = 0 Then, b = (-53) or b = (-1) So, when a = (53), a > b for b = (-53) and a > b for b = (-1) And when a = 8, a > b for b = (-53) and a > b for b = (-1) ∴ we can OBSERVE that a > b. |
|
| 25. |
II. 8b2 + 10b + 3 = 01). a < b2). a > b3). a ≤ b4). a ≥ b |
|
Answer» I. a2 - 8A + 12 = 0 ⇒ a2 - 6a - 2A + 12 = 0 ⇒ a(a - 6) - 2(a - 6) = 0 ⇒ (a - 2) (a - 6) = 0 Then, a = 2 or a = 6 II. 8b2 + 10b + 3 = 0 ⇒ 8b2 + 6b + 4B + 3 = 0 ⇒ 2B(4b + 3) + 1(4b + 3) = 0 ⇒ (2b + 1) (4b + 3) = 0 Then, b = (-1/2) or b = (-3/4) So, when a = 2, a > b for b = (-1/2) and a > b for b = (-3/4) And when a = 6, a > b for b = (-1/2) and a > b for b = (-3/4) ∴ we can observe that a > b. |
|
| 26. |
II. y2 - 36y + 323 = 01). if x > y2). if x ≥ y3). if x < y4). if x ≤ y |
|
Answer» I. x2 - 324 = 0 ⇒ x2 = 324 ⇒ x = 18 or x = - 18 II. y2 - 36Y + 323 = 0 ⇒ y2 -17y - 19y + 323 = 0 ⇒ y(y - 17) -19(y - 17) = 0 ⇒ (y - 17) (y - 19) = 0 ⇒ y = 17 or y = 19 When x = 18, x > y for y = 17 and x < y for y = 19 And when x = -18, x < y for y = 17 and x < y for y = 19 ∴ The relationship cannot be ESTABLISHED. |
|
| 27. |
If the sum of three numbers which have difference of 3 between them is 633, then find the largest number?1). 2202). 3203). 2144). 206 |
|
Answer» Let ‘x’ be the first number. Other TWO numbers are (x + 3) & (x + 6) GIVEN that, x + x + 3 + x + 6 = 633 ⇒ 3x = 624, x = 624/3 = 208 ⇒ Third number = (x + 6) = 208 + 6 = 214 ∴ Answer is 214 |
|
| 28. |
1). if x < y2). if x ≥ y3). if x ≤ y4). if x > y |
|
Answer» $(4{x^2} - \LEFT( {8 + \SQRT {15} } \right)x + 2\sqrt {15} {\rm{}} = {\rm{}}0)$ ⇒ 4x(x – 2) – √15(x – 2) = 0 ⇒ (x – 2) (4x - √15) = 0 ⇒ x = 2 or x = √15/4 ≈ 0.97 $(12{y^2} - \left( {18 + 2\sqrt {15} } \right)y + 3\sqrt {15} = 0)$ ⇒ 6y(2y – 3) – √15(2y – 3) = 0 ⇒ (2y – 3) (6y - √15) = 0 ⇒ y = 3/2 or y = √15/6 ≈ 0.645 ∴ x > y |
|
| 29. |
1). Is x > y2). If x ≤ y3). If x < y4). If x ≥ y |
|
Answer» STATEMENT I: 5x – 35/x = 18 ⇒ 5x2 – 18x – 35 = 0 5x2 – 25x + 7x – 35 = 0 5x (x – 5) + 7 (x – 5) = 0 x = 5 or x = - 7/5 Statement II: 25y2 + 110y + 121 = 0 25y2 + 55y + 55y + 121 = 0 5Y (5y + 11) + 11 (5y + 11) = 0 y = - 11/5 ∴ y < x |
|
| 30. |
II. y2 + 38y + 217 = 01). x < y2). x > y3). x = y OR the relationship cannot be determined4). x ≥ y |
|
Answer» I. x2 – 15x – 154 = 0 ⇒ x2 – 22X + 7x – 154 = 0 ⇒ x(x – 22) + 7(x – 22) = 0 ⇒ (x – 22)(x + 7) = 0 Then, x = + 22 or x = - 7 II. y2 + 38Y + 217 = 0 ⇒ y2 + 31y + 7y + 217 = 0 ⇒ y(y + 31) + 7(y + 31) = 0 ⇒ (y + 31)(y + 7) = 0 Then, y = - 31 or y = - 7 So, when x = + 22, x > y for y = - 31 and x > y for y = - 7 And when x = - 7, x > y for y = - 31 and x = y for y = - 7 ∴ So, we can observe that x ≥ y. |
|
| 31. |
In an examination 62% of the examinees got passed in Mathematics, 52% passed in English and 22% failed in both the subjects. If 108 is the number of examinees who passed in both the subjects then find out the total number of candidates –1). 9002). 3003). 4004). 1000 |
|
Answer» Let the total number of students be X. Then, according to question: Number of students passed in Mathematics = 0.62X Number of students passed in ENGLISH = 0.52X Number of students passed in both Mathematics and English = 108 Number of students fail in both Mathematics and English = 0.22X We know that, Number of students passed + Number of students FAILED = Total number of students Now, number of students passed = 0.62X + 0.52X – 108 (Because 108 factor got COUNTED twice) ∴ 0.62X + 0.52X – 108 + 0.22X = X ⇒ 1.36X – 108 = X ⇒ X = 300 |
|
| 32. |
II. y2 + 25y + 156 = 01). if x > y2). if x ≥ y3). if x < y4). if x ≤ y |
|
Answer» I. x2 + 9x - 22 = 0 ⇒ x2 + 11x - 2x - 22 = 0 ⇒ x(x + 11) - 2(x + 11) = 0 ⇒ (x + 11) (x - 2) = 0 ⇒ x = -11 or x = 2 II. y2 + 25y + 156 = 0 ⇒ y2 + 12y + 13Y + 156 = 0 ⇒ y(y + 12) + 13(y + 12) = 0 ⇒ (y + 12) (y + 13) = 0 ⇒ y = -12 or y = -13 When x = -11, x > y for y = -12 and x > y for y = -13 And when x = 2, x > y for y = -12 and x > y for y = -13 ∴ x > y |
|
| 33. |
1). If x > y2). If x < y3). If x ≥ y4). If x ≤ y |
|
Answer» ⇒ 5x2 – 15x – 3x + 9 = 0 ⇒ (5x – 3)(X - 3) = 0 ⇒ x = 3/5 or x = 3 3Y2 + 5y – 2 = 0 ⇒ 3y2 + 6y – y -2 = 0 ⇒ (3y - 1)(y + 2) = 0 ⇒ y = 1/3 or -2 ∴ x = 3/5, 3 and y = 1/3, -2 ∴ comparing these VALUES of x and y, we get x > y. |
|
| 34. |
II. 28b2 + 15b + 2 = 01). a < b2). a > b3). a ≤ b4). a ≥ b |
|
Answer» I. a2 + 10a + 21 = 0 ⇒ a2 + 7a + 3A + 21 = 0 ⇒ a(a + 7) + 3(a + 7) = 0 ⇒ (a + 3) (a + 7) = 0 Then, a = (-3) or a = (-7) II. 28b2 + 15B + 2 = 0 ⇒ 28b2 + 7b + 8B + 2 = 0 ⇒ 7b(4b + 1) + 2(4b + 1) = 0 ⇒ (7b + 2) (4b + 1) = 0 Then, b = (-2/7) or b = (-1/4) So, when a = (-3), a < b for b = (-2/7) and a < b for b = (-1/4) And when a = (-7), a < b for b = (-2/7) and a < b for b = (-1/4) ∴ we can OBSERVE that a < b. |
|
| 35. |
II. b2 - 33b + 272 = 01). a < b2). a > b3). a = b or the relationship cannot be determined4). a ≥ b |
|
Answer» I. a2 - 36A + 323 = 0 ⇒ a2 - 19a - 17a + 323 = 0 ⇒ a(a – 19) - 17(a - 19) = 0 ⇒ (a - 19)(a - 17) = 0 Then, a = 19 or a = 17 II. b2 - 33b + 272 = 0 ⇒ b2 - 17b – 16b + 272 = 0 ⇒ b(b - 17) - 16(b - 17) = 0 ⇒ (b - 17)(b - 16) = 0 Then, b = 17 or b = 16 So, when a = 19, a > b for b = 17 and a > b for b = 16 And when a = 17, a = b for b = 17 and a > b for b = 16 ∴ We can observe that a ≥ b. |
|
| 36. |
II. b2 + 27b + 180 = 01). a < b2). a > b3). a ≤ b4). a ≥ b |
|
Answer» I. a2 - 46a - 147 = 0 ⇒ a2 - 49a + 3A - 147 = 0 ⇒ a(a - 49) + 3(a - 49) = 0 ⇒ (a - 49) (a + 3) = 0 Then, a = (-3) or a = 49 ⇒ b2 + 15b + 12B + 180 = 0 ⇒ b(b + 15) + 12(b + 15) = 0 ⇒ (b + 12) (b + 15) = 0 Then, b = (-12) or b = (-15) So, when a = (-3), a > b for b = (-12) and a > b for b = (-15) And when a = 49, a > b for b = (-12) and a > b for b = (-15) ∴ we can OBSERVE that a > b. |
|
| 37. |
1). 1 year2). 2 years3). 25 years4). Data inadequate |
|
Answer» A is as much YOUNGER than B as he is older than C. So, the age of A < the age of B And the age of A > the age of C The summation of the age of B and C = 40 years From the above data, we cannot determine the difference in age between B and A. |
|
| 38. |
II. b2 - 53b + 702 = 01). a < b2). a > b3). a = b or the relationship cannot be determined4). a ≥ b |
|
Answer» I. a2 - 25a – 26A + 650 = 0 ⇒ a2 - 25a - 26a + 650 = 0 ⇒ a(a – 25) - 26(a - 25) = 0 ⇒ (a - 25)(a - 26) = 0 Then, a = 25 or a = 26 II. b2 – 53b + 702 = 0 ⇒ b2 - 27b – 26B + 702 = 0 ⇒ b(b - 27) - 26(b - 27) = 0 ⇒ (b - 27)(b - 26) = 0 Then, b = 27 or b = 26 So, when a = 25, a < b for b = 27 and a < b for b = 26 And when a = 26,a < b for b = 27 and a = b for b = 26 ∴ We can OBSERVE that a ≤ b. |
|
| 39. |
The sum of ages of a father and son is 45 years. Five years ago, the product of their ages was four times the father’s age at that time. The present age of the father is1). 39 years2). 36 years3). 25 years4). 40 years |
|
Answer» LET the AGES of father and son be x and y The SUM of ages of a father and son is 45 years. ∴ x + y = 45----(1) Five years ago, the product of their ages was FOUR times the father’s age at that time. Five years ago their ages would be (x - 5) and (y - 5) ∴ (x - 5) (y - 5) = 4(x - 5) ⇒ y - 5 = 4 ⇒ y = 9 Put the value in equation (1) ⇒ x + 9 = 45 ⇒ x = 45 – 9 = 36 years ∴ The present age of father will be = 36 years |
|
| 40. |
II. 35y2 – 12y + 1 = 01). if x < y2). if x > y3). if x ≤ y4). if x ≥ y |
|
Answer» I. 10x2 – 7x + 1 = 0 ⇒ 10x2 – 5X – 2x + 1 = 0 ⇒ 5x(2x – 1) – 1(2x – 1) = 0 ⇒ (5x – 1)(2x – 1) = 0 Then, x = (1/5) or x = (1/2) II. 35y2 – 12y + 1 = 0 ⇒ 35y2 – 7y – 5y + 1 = 0 ⇒ 7y(5y – 1) – 1(5y – 1) = 0 ⇒ (7y – 1)(5y – 1) = 0 Then, y = (1/7) or y = (1/5) So, when x = (1/5), x = y for y = (1/5) and x > y for y = (1/7) And when x = (1/2), x > y for y = (1/5) and x > y for y = (1/7) ∴ x ≥ y |
|
| 41. |
II. y2 – 3y – 108 = 01). if x < y2). if x ≥ y3). if x ≤ y4). if x > y |
|
Answer» x2 – 19X + 84 = 0 ⇒ x2 – 12x – 7X + 84 = 0 ⇒ x(x – 12) – 7(x – 12) = 0 ⇒ (x – 12) (x – 7) = 0 ⇒ x = 12 or x = 7 y2 – 3Y – 108 = 0 ⇒ y2 – 12y + 9y – 108 = 0 ⇒ y(y – 12) + 9(y – 12) = 0 ⇒ (y – 12) (y + 9) = 0 ⇒ y = 12 or y = -9 ∴ No relationship can be established |
|
| 42. |
1). Quantity A > Quantity B2). Quantity A < Quantity B3). Quantity A ≥ Quantity B4). Quantity A ≤ Quantity B |
|
Answer» Quantity A: For the first woman: Amount for each extra hr = Rs 100 ⇒ Amount to be paid for 6 hr = 2000 + 2 × 100 = 2200 For the second woman: Amount for 6 hr = Rs 800 Amount for each extra hr = Rs. 400 ⇒ Amount to be paid for 8 hr = 800 + 400 × 2 = 1600 ⇒ Total amount to be paid by lady = 2200 + 1600 = Rs. 3800 Quantity B: Considering confusion, For the first woman: Amount for 4 hrs = Rs.2000 Amount for each extra hr = Rs 100 ⇒ Amount to be paid for 8 hr = 2000 + 4 × 100 = 2400 For the second woman: Amount for 6 hr = Rs 800 Amount for each extra hr = Rs. 400 Amount to be paid for 6 hr = 800 ⇒ Total amount to be paid by lady = 2400 + 800 = Rs. 3200 ∴ Quantity A > Quantity B |
|
| 43. |
II. 12y2 – 22y + 8 = 01). If x > y2). If x ≥ y3). If x< y4). If x ≤ y |
|
Answer» We will solve both the equations separately. Equation I: 8x2 + 6X - 5 = 0 ⇒ 8x2 + 10x – 4x – 5 = 0 ⇒ 4x (2x – 1) + 5(2x – 1) = 0 ⇒ (4x + 5) (2x – 1) = 0 ⇒ x = - 5/4 = - 1.25 or, x = ½ = 0.5 Equation II: 12y2 – 22Y + 8 = 0 ⇒ 12y2 – 16y – 6Y + 8 = 0 ⇒ 6y (2y – 1) – 8(2y – 1) = 0 ⇒ (6y – 8) (2y – 1) = 0 ⇒ y = 8/6 = 1.33 or, y = ½ = 0.5 Comparing the values of x and y, we GET, x ≤ y |
|