1.

Let the p.m.f. ( probability mass function ) of random variable x be `P(x) = (4/x)(5/9)^(x)(4/x)^(4-x), x = 0, 1, 2, 3, 4` = 0 , otherwise Find E(x) and Var.(x)

Answer» `P(x) = (4/x)(5/9)^(x)(4/x)^(4-x)`
` x = 0, 1, 2, 3, 4`
= 0 otherwise
Comparing this with
`P(x) = .^(n)C_(x) p^(x)q^(n-x)` we get
` n = 4, p = 5/9, q = 4/9`
` E(x) = np = 4 (5/9) = 20/9`
` = 2*22`
Var (x) = npq = ` 4 xx 5/9 xx 4/9`
`= 80/81 `
`= 0.9876 `
Hence ` E(x) = 2*22 and Var(x) = 0.9876`.


Discussion

No Comment Found

Related InterviewSolutions