1.

Evaluate : `int_(0)^(pi) (x sin x )/(1 + sin x ) dx `

Answer» Let `underset(0)overset(pi) int (x sin x dx)/(1 + sin x ) = I` ....(i)
then, ` I =underset(0)overset(pi) int((pi -x)sin (pi -x))/(1+sin (pi -x))dx `
` = underset(0)overset(pi) int ((pi -x)sin x)/(1 + sin x) dx ` ....(ii)
Adding equations (i) and (ii),
`2 I = underset(0)overset(pi) int (pi sin x dx)/(1 + sin x ) `
or ` I = pi/2 underset(0)overset(pi) int (sin x)/(1 + sin x) dx `
or ` I = pi/2 underset(0)overset(pi) int((1-sin x) sin x)/((1+sin x)(1-sin x)) dx`
or ` I = pi/2 underset(0)overset(pi) int (sin x - sin^(2) x)/(1- sin^(2) x) dx `
or ` I = pi/2 underset(0)overset(pi) int (sin x - sin^(2)x)/(cos^(2)x) dx `
or `I = pi/2 underset(0)overset(pi)int(sin x )/(cos^(2) x) - pi/2 underset(0)overset(pi) int (sin^(2)x)/(cos ^(2) x ) dx `
or ` I = pi/2 underset(0)overset(pi) int tan x sec x dx - pi/2 underset(0)overset(pi)int (1-cos^(2)x)/(cos^(2) x) dx `
or `I = pi/2 [sec x]_(0)^(pi) - pi/2 underset(0)overset(pi)intsec^(2) x dx + pi/2 underset(0)overset(pi)int dx `
or ` I = pi/2 [sec pi - sec 0] - pi/2 [tan x]_(0)^(pi) + pi/2 [x]_(0)^(pi) `
or ` I = pi/2 [-1-1] - pi/2 [tan pi - tan0] + pi/2 [pi - 0]`
or ` I = - pi - pi/2 [0-0] + pi/2[pi]`
or ` I = pi [pi/2 -1]`
Thus, `underset(0)overset(pi)int (x sin x dx)/(1 + sin x ) = pi [(pi -2)/2]`


Discussion

No Comment Found

Related InterviewSolutions