Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 2351. |
The angles of triangle are in ratio 123. Find angles in radian |
| Answer» Π/6 , Π/3 , Π/2 | |
| 2352. |
√5-√3÷√5+√3+√5+√3÷√5-√3=a+b√15 |
| Answer» | |
| 2353. |
Find the domain of F(x) = x+7/x^2-8x+4 |
| Answer» तु भुत आसन ह | |
| 2354. |
What is mathematical induction briefly |
|
Answer» Mathematical induction is a mathematical proof technique. It is essentially used to prove that a property P(n) holds for every natural number n, i.e. for n = 0, 1, 2, 3, and so on.\xa0The method of induction requires two cases to be proved. Production of electricity by magnet |
|
| 2355. |
Modern abc book solutions |
|
Answer» There are hint of the questions on the book itself plz check that .. What |
|
| 2356. |
(b^2-c^2)cot a + (c^2-a^2)cot b +(a^2+b^2)cot c =0 |
| Answer» | |
| 2357. |
if u {1,2,3,4,5,6,7,8,9} a{1,2,3,4} b{2,4,6,8} and c{3,4,5,6} find a\' b\' (auc)\' |
|
Answer» a\'=u-a=(5,6,7,8,9);b\'=u-b=(1,3,5,7,9);(auc)\'=0 a\' is {56789}b\' is {13579}(auc)\' is {1256789} |
|
| 2358. |
Exercise 3.3 23 |
| Answer» View ncert solutions,which is available on this app | |
| 2359. |
Find the modoulus(magnitude)of the following(3+2i) |
|
Answer» Root 13 It will be equal to root 13 U can also say root 3 square plus 2 square [(3)^2 + (2)^2] |
|
| 2360. |
Who discovered trigonometry |
|
Answer» Hipparchus of nicaea? Hipparchus of nicaea Hipparchus of nicaea Hipparchus of nicaea |
|
| 2361. |
A set of animals living on the earth is finite set or infinite set |
|
Answer» Finite Finite Finite |
|
| 2362. |
In Triangle ABC prove that sin B-C/2=b-c/a cosA/2 |
| Answer» | |
| 2363. |
Prove that sin 8x cosx - sin6x cos 3x÷ cos2x cosx - sin 4x sin 3x= tan 2x |
| Answer» | |
| 2364. |
35+345= |
|
Answer» 380 380 380 380 |
|
| 2365. |
Chapter 4n(n+1)(n+2)(n+3) is divisible by 24 |
| Answer» For n=1 p (1):1×2×3×4=24 is divisible by 24 Let p(k) is true P (k ):k (k+1)(k+2)(k+3)=24q where q £NP (k+1):(k+1 )(k+2 )(k+3 )(k+4) (K+4)(24q)/k which is divisible by 24P (n) is true for n £N | |
| 2366. |
a+b/c= cos (A-B/2)/sinC/2 |
| Answer» | |
| 2367. |
Domain and range of function f(x) =x^2+3x+5--------------------X^2-5x+4 |
| Answer» | |
| 2368. |
Plss explain me example 2 how did he get 343 |
| Answer» | |
| 2369. |
The domain of the function f(x)=1+2(x+4)-½/2-(x+4)½+5(x+4)½ |
| Answer» | |
| 2370. |
An irrerational number between √3 and √5 |
|
Answer» Spelling of "irrerational" is wrong.Correct is irrational. 1.8080080008000..... is the answerAnd can be any other |
|
| 2371. |
(K^3 +6k^2 +9k +4)/k+3 |
| Answer» Reminder is 4. | |
| 2372. |
sin11asin7a+sinasin3a/cos11asin3a+cos7asina=tan8a prove this |
| Answer» sin11asina+sin7asin3a/cos11asina+cos7asin3a=2sin11asina+2sin7asin3a/2cos11asina+2cos7asin3a=[{cos(11a-a)-cos(11a+a)}+{cos(7a-3a)-cos(7a+3a)}]/[{sin(11a+a)-sin(11a-a)}+{sin(7a+3a)-sin(7a-3a)}]=(cos10a-cos12a+cos4a-cos10a)/(sin12a-sin10a+sin10a-sin4a)=(cos4a-cos12a)/(sin12a-sin4a)=[2sin(4a+12a)/2sin(12a-4a)/2]/[2cos(12a+4a)/2sin(12a-4a)/2]=sin8asin4a/cos8asin4a=sin8a/cos8a=tan 8a | |
| 2373. |
4log8/25.3log16/125.log5 |
| Answer» | |
| 2374. |
1 - sin2x/1 + sin2x = tan sq. (π/4-x) |
| Answer» | |
| 2375. |
{x:x > 15 and x |
| Answer» 0 | |
| 2376. |
Evaluate 5+9i÷-3+4i |
|
Answer» Aap apni fb id btana 5+9i/-3+4i*-3-4i/-3-4i=-15-20i-27i-36i²/9-16i²As i²=-1 then15-47i+36/25=51-47i/25So,this is the final evaluated answer Rationalise the denominator first |
|
| 2377. |
Find the 20th term and the sum of 20 terms of the series:2×4+4×6+6×8+.. |
|
Answer» General terms 2n(2n+2) put n=20 you get 40×42 40×42 |
|
| 2378. |
Value of sec 240 degree? |
| Answer» -2 | |
| 2379. |
Solutions of element math |
| Answer» 1+2/3(21£.13) solve this question | |
| 2380. |
Let A proper set B proper set U. Exhibit it in a venn diagram |
| Answer» | |
| 2381. |
If z1=2+i and z2=1+3i then Re ( z1- z2 )=? |
|
Answer» 1 1 Re (z1-z2) =1 1 |
|
| 2382. |
A-B = A ∆ (A intersection B) |
| Answer» A-B means everything in A except for anything in A∩BA-B=A∩Bc (A intersect B complement)pick an element xlet x∈(A-B)therefore x∈A but x∉Bx∉B means x∈Bcx∈A and x∈Bcx∈(A∩Bc)x∈(A-B)therefore A-B=A∩Bc | |
| 2383. |
Sin15=?Cos15=?Tan15=?Sin75=?Cos75=?Tan75=?Sin105=?Cos105=?Tan105=? |
| Answer» | |
| 2384. |
Evaluate Tan 13π/12 |
|
Answer» Tu ki laina pdhla apna By the tangent subtraction formula: tan(A - B) = [tan(A) - tan(B)]/[1 + tan(A)tan(B)]. Thus: tan(13π/12) = tan(4π/3 - π/4), from the hint = [tan(4π/3) - tan(π/4)]/[1 + tan(4π/3)tan(π/4)], from the above formula = (-1 + √3)/(1 + √3) = -(1 - √3)/(1 + √3) = -(1 - √3)^2/[(1 + √3)(1 - √3)], by rationalizing = -(1 - √3)^2/(1 - 3), via difference of squares = (1/2)(1 - √3)^2 = (1/2)(1 - 2√3 + 3) = (1/2)(4 - 2√3) = 2 - √3. |
|
| 2385. |
Solve l3-4×l≥9 |
| Answer» | |
| 2386. |
Sin20.sin40.sin60.sin80=1/16 |
| Answer» since,sin60=√ 3/2= √ 3/2( sin20sin40sin80)=√ 3/2( sin20sin80sin40)=√ 3/4 [(2sin20sin40)sin80]on applying [cos(A-B)-cos(A+B) = 2sinAsinB]we get,= √ 3/4 (cos20-cos60)sin80 [since,cos(-a)=cosa]= √ 3/4(cos20sin80-cos60sin80)= √ 3/8(2sin80cos20-sin80)= √ 3/8(sin100+sin60-sin80)= √ 3/8( √ 3/2+sin100-sin80 )= √ 3/8( √ 3/2+sin(180-80)-sin80 )= √ 3/8( √ 3/2+sin80-sin80 ) [since,sin(180-a)=sina]= √ 3/8( √ 3/2)= 3/16 | |
| 2387. |
What is Imaginary or Real numbers? |
| Answer» An imaginary number is a complex number that can be written as a real number multiplied by the imaginary unit i, which is defined by its property i2 = −1. | |
| 2388. |
P(n)=1+4+7+.......+n(n+1)(n+2)= {n(n+1)(n+2)(n+3)}÷4Given for P(1) and P(m).Prove for P(m+1) |
| Answer» Let P(n) = {tex}1 \\cdot 2 \\cdot 3 + 2 \\cdot 3 \\cdot 4 + .... + n(n + 1)(n + 2){/tex}{tex} = \\frac{{n(n + 1)(n + 2)(n + 3)}}{4}{/tex}For n = 1{tex}P(1) = 1 \\times 2 \\times 3 = \\frac{{1 \\times 2 \\times 3 \\times 4}}{4} \\Rightarrow 6 = 6{/tex}{tex}\\therefore {/tex}\xa0P (1) is trueLet P(n) be true for n = k.{tex}\\therefore P(k) = 1 \\cdot 2 \\cdot 3 + 2 \\cdot 3 \\cdot 4 + ...{/tex}{tex} + (k + 1)(k + 2) = \\frac{{k(k + 1)(k + 2)(k + 3)}}{4}{/tex}\xa0... (i)For n = k + 1{tex}P(k + 1) = 1 \\cdot 2 \\cdot 3 + 2 \\cdot 3 \\cdot 4 + ... + {/tex}{tex}k(k + 1)(k + 2) + (k + 1)(k + 2)(k + 3){/tex}{tex} = \\frac{{k(k + 1)(k + 2)(k + 3)}}{4}{/tex}\xa0+ (k + 1) (k + 2) (k + 3) [Using (i)]{tex} = (k + 1)(k + 2)(k + 3)\\left[ {\\frac{{k + 4}}{4}} \\right]{/tex}{tex} = \\frac{{(k + 1)(k + 2)(k + 3)(k + 4)}}{4}{/tex}{tex}\\therefore {/tex}\xa0P(k + 1) is true.Thus P(k) is true {tex} \\Rightarrow {/tex}\xa0P (k + 1) is true.Hence by principle of mathematical induction, P(n) is true for all {tex}n \\in N{/tex}. | |
| 2389. |
Differentiation of 3t*2 |
|
Answer» 6t 3 |
|
| 2390. |
By elimination method 3x-y+7/11+2=102y+x+11/7=10 |
| Answer» The given system of equations is{tex}3x - \\frac{{y + 7}}{{11}} + 2 = 10{/tex}\xa0...(i){tex}2y + \\frac{{x - 11}}{7} = 10{/tex}\xa0....(ii)From (i), we get{tex}\\frac{{33x - y - 7 + 22}}{{11}} = 10{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}33x - y + 15 = 10 × 11{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}33x + 15 - 110 = y{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}y = 33x - 95{/tex}From (ii), we get{tex}\\frac{{14y + x + 11}}{7} = 10{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}14y + x + 11 = 10 × 7{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}14y + x + 11 = 70{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}14y + x = 70 - 11{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}14y + x = 59{/tex} ....(iii)Substituting y = 33x - 95 in (iii), we get14(33x - 95) + x = 59{tex}\\Rightarrow{/tex}\xa0462x - 1330 + x = 59{tex}\\Rightarrow{/tex}\xa0463x = 59 + 1330{tex}\\Rightarrow{/tex}\xa0463x = 1389{tex}\\Rightarrow x = \\frac{{1389}}{{463}} = 3{/tex}Putting x = 3, in y = 33x - 95, we gety = 33 {tex}\\times{/tex}\xa03 - 95{tex}\\Rightarrow{/tex}\xa0y = 99 - 95 = 4{tex}\\Rightarrow{/tex} y = 4Hence, Solution of the given system of equation is x = 3, y = 4. | |
| 2391. |
If 391 is divided into three parts proportional 1/2:2/3:3 then first part is |
| Answer» | |
| 2392. |
Prove that : 12!/n!=1.3.5 ............ (2n-1).2^n |
| Answer» | |
| 2393. |
Name the france system also used in ch-3 |
| Answer» | |
| 2394. |
If n+1!=60. n+1! , find n ? Solve it plz... |
| Answer» | |
| 2395. |
Name the british system used in ch-3 |
| Answer» Grade | |
| 2396. |
1+45 |
|
Answer» 46 46 |
|
| 2397. |
X+y=2,x+y=8 |
| Answer» 6 | |
| 2398. |
Let R is relation to Q,R{(a,b):a,b€Q and a-b€Z}.Show that: (a-a)€R for all a€Q |
| Answer» | |
| 2399. |
If a,b belongs to N and R is \'\'a is a divisor of b\'\',then prove that R is a relation on N |
| Answer» | |
| 2400. |
x belongs to (A U B)\' =..? |
| Answer» A\'℅ | |