Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

2351.

The angles of triangle are in ratio 123. Find angles in radian

Answer» Π/6 , Π/3 , Π/2
2352.

√5-√3÷√5+√3+√5+√3÷√5-√3=a+b√15

Answer»
2353.

Find the domain of F(x) = x+7/x^2-8x+4

Answer» तु भुत आसन ह
2354.

What is mathematical induction briefly

Answer» Mathematical induction is a mathematical proof technique. It is essentially used to prove that a property P(n) holds for every natural number n, i.e. for n = 0, 1, 2, 3, and so on.\xa0The method of induction requires two cases to be proved.
Production of electricity by magnet
2355.

Modern abc book solutions

Answer» There are hint of the questions on the book itself plz check that ..
What
2356.

(b^2-c^2)cot a + (c^2-a^2)cot b +(a^2+b^2)cot c =0

Answer»
2357.

if u {1,2,3,4,5,6,7,8,9} a{1,2,3,4} b{2,4,6,8} and c{3,4,5,6} find a\' b\' (auc)\'

Answer» a\'=u-a=(5,6,7,8,9);b\'=u-b=(1,3,5,7,9);(auc)\'=0
a\' is {56789}b\' is {13579}(auc)\' is {1256789}
2358.

Exercise 3.3 23

Answer» View ncert solutions,which is available on this app
2359.

Find the modoulus(magnitude)of the following(3+2i)

Answer» Root 13
It will be equal to root 13
U can also say root 3 square plus 2 square
[(3)^2 + (2)^2]
2360.

Who discovered trigonometry

Answer» Hipparchus of nicaea?
Hipparchus of nicaea
Hipparchus of nicaea
Hipparchus of nicaea
2361.

A set of animals living on the earth is finite set or infinite set

Answer» Finite
Finite
Finite
2362.

In Triangle ABC prove that sin B-C/2=b-c/a cosA/2

Answer»
2363.

Prove that sin 8x cosx - sin6x cos 3x÷ cos2x cosx - sin 4x sin 3x= tan 2x

Answer»
2364.

35+345=

Answer» 380
380
380
380
2365.

Chapter 4n(n+1)(n+2)(n+3) is divisible by 24

Answer» For n=1 p (1):1×2×3×4=24 is divisible by 24 Let p(k) is true P (k ):k (k+1)(k+2)(k+3)=24q where q £NP (k+1):(k+1 )(k+2 )(k+3 )(k+4) (K+4)(24q)/k which is divisible by 24P (n) is true for n £N
2366.

a+b/c= cos (A-B/2)/sinC/2

Answer»
2367.

Domain and range of function f(x) =x^2+3x+5--------------------X^2-5x+4

Answer»
2368.

Plss explain me example 2 how did he get 343

Answer»
2369.

The domain of the function f(x)=1+2(x+4)-½/2-(x+4)½+5(x+4)½

Answer»
2370.

An irrerational number between √3 and √5

Answer» Spelling of "irrerational" is wrong.Correct is irrational.
1.8080080008000..... is the answerAnd can be any other
2371.

(K^3 +6k^2 +9k +4)/k+3

Answer» Reminder is 4.
2372.

sin11asin7a+sinasin3a/cos11asin3a+cos7asina=tan8a prove this

Answer» sin11asina+sin7asin3a/cos11asina+cos7asin3a=2sin11asina+2sin7asin3a/2cos11asina+2cos7asin3a=[{cos(11a-a)-cos(11a+a)}+{cos(7a-3a)-cos(7a+3a)}]/[{sin(11a+a)-sin(11a-a)}+{sin(7a+3a)-sin(7a-3a)}]=(cos10a-cos12a+cos4a-cos10a)/(sin12a-sin10a+sin10a-sin4a)=(cos4a-cos12a)/(sin12a-sin4a)=[2sin(4a+12a)/2sin(12a-4a)/2]/[2cos(12a+4a)/2sin(12a-4a)/2]=sin8asin4a/cos8asin4a=sin8a/cos8a=tan 8a
2373.

4log8/25.3log16/125.log5

Answer»
2374.

1 - sin2x/1 + sin2x = tan sq. (π/4-x)

Answer»
2375.

{x:x > 15 and x

Answer» 0
2376.

Evaluate 5+9i÷-3+4i

Answer» Aap apni fb id btana
5+9i/-3+4i*-3-4i/-3-4i=-15-20i-27i-36i²/9-16i²As i²=-1 then15-47i+36/25=51-47i/25So,this is the final evaluated answer
Rationalise the denominator first
2377.

Find the 20th term and the sum of 20 terms of the series:2×4+4×6+6×8+..

Answer» General terms 2n(2n+2) put n=20 you get 40×42
40×42
2378.

Value of sec 240 degree?

Answer» -2
2379.

Solutions of element math

Answer» 1+2/3(21£.13) solve this question
2380.

Let A proper set B proper set U. Exhibit it in a venn diagram

Answer»
2381.

If z1=2+i and z2=1+3i then Re ( z1- z2 )=?

Answer» 1
1
Re (z1-z2) =1
1
2382.

A-B = A ∆ (A intersection B)

Answer» A-B means everything in A except for anything in A∩BA-B=A∩Bc (A intersect B complement)pick an element xlet x∈(A-B)therefore x∈A but x∉Bx∉B means x∈Bcx∈A and x∈Bcx∈(A∩Bc)x∈(A-B)therefore A-B=A∩Bc
2383.

Sin15=?Cos15=?Tan15=?Sin75=?Cos75=?Tan75=?Sin105=?Cos105=?Tan105=?

Answer»
2384.

Evaluate Tan 13π/12

Answer» Tu ki laina pdhla apna
By the tangent subtraction formula: tan(A - B) = [tan(A) - tan(B)]/[1 + tan(A)tan(B)]. Thus: tan(13π/12) = tan(4π/3 - π/4), from the hint = [tan(4π/3) - tan(π/4)]/[1 + tan(4π/3)tan(π/4)], from the above formula = (-1 + √3)/(1 + √3) = -(1 - √3)/(1 + √3) = -(1 - √3)^2/[(1 + √3)(1 - √3)], by rationalizing = -(1 - √3)^2/(1 - 3), via difference of squares = (1/2)(1 - √3)^2 = (1/2)(1 - 2√3 + 3) = (1/2)(4 - 2√3) = 2 - √3.
2385.

Solve l3-4×l≥9

Answer»
2386.

Sin20.sin40.sin60.sin80=1/16

Answer» since,sin60=√ 3/2= √ 3/2( sin20sin40sin80)=√ 3/2( sin20sin80sin40)=√ 3/4 [(2sin20sin40)sin80]on applying [cos(A-B)-cos(A+B) = 2sinAsinB]we get,= √ 3/4 (cos20-cos60)sin80 [since,cos(-a)=cosa]= √ 3/4(cos20sin80-cos60sin80)= √ 3/8(2sin80cos20-sin80)= √ 3/8(sin100+sin60-sin80)= √ 3/8( √ 3/2+sin100-sin80 )= √ 3/8( √ 3/2+sin(180-80)-sin80 )= √ 3/8( √ 3/2+sin80-sin80 ) [since,sin(180-a)=sina]= √ 3/8( √ 3/2)= 3/16
2387.

What is Imaginary or Real numbers?

Answer» An imaginary number is a complex number that can be written as a real number multiplied by the imaginary unit i, which is defined by its property i2 = −1.
2388.

P(n)=1+4+7+.......+n(n+1)(n+2)= {n(n+1)(n+2)(n+3)}÷4Given for P(1) and P(m).Prove for P(m+1)

Answer» Let P(n) = {tex}1 \\cdot 2 \\cdot 3 + 2 \\cdot 3 \\cdot 4 + .... + n(n + 1)(n + 2){/tex}{tex} = \\frac{{n(n + 1)(n + 2)(n + 3)}}{4}{/tex}For n = 1{tex}P(1) = 1 \\times 2 \\times 3 = \\frac{{1 \\times 2 \\times 3 \\times 4}}{4} \\Rightarrow 6 = 6{/tex}{tex}\\therefore {/tex}\xa0P (1) is trueLet P(n) be true for n = k.{tex}\\therefore P(k) = 1 \\cdot 2 \\cdot 3 + 2 \\cdot 3 \\cdot 4 + ...{/tex}{tex} + (k + 1)(k + 2) = \\frac{{k(k + 1)(k + 2)(k + 3)}}{4}{/tex}\xa0... (i)For n = k + 1{tex}P(k + 1) = 1 \\cdot 2 \\cdot 3 + 2 \\cdot 3 \\cdot 4 + ... + {/tex}{tex}k(k + 1)(k + 2) + (k + 1)(k + 2)(k + 3){/tex}{tex} = \\frac{{k(k + 1)(k + 2)(k + 3)}}{4}{/tex}\xa0+ (k + 1) (k + 2) (k + 3) [Using (i)]{tex} = (k + 1)(k + 2)(k + 3)\\left[ {\\frac{{k + 4}}{4}} \\right]{/tex}{tex} = \\frac{{(k + 1)(k + 2)(k + 3)(k + 4)}}{4}{/tex}{tex}\\therefore {/tex}\xa0P(k + 1) is true.Thus P(k) is true {tex} \\Rightarrow {/tex}\xa0P (k + 1) is true.Hence by principle of mathematical induction, P(n) is true for all {tex}n \\in N{/tex}.
2389.

Differentiation of 3t*2

Answer» 6t
3
2390.

By elimination method 3x-y+7/11+2=102y+x+11/7=10

Answer» The given system of equations is{tex}3x - \\frac{{y + 7}}{{11}} + 2 = 10{/tex}\xa0...(i){tex}2y + \\frac{{x - 11}}{7} = 10{/tex}\xa0....(ii)From (i), we get{tex}\\frac{{33x - y - 7 + 22}}{{11}} = 10{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}33x - y + 15 = 10 × 11{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}33x + 15 - 110 = y{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}y = 33x - 95{/tex}From (ii), we get{tex}\\frac{{14y + x + 11}}{7} = 10{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}14y + x + 11 = 10 × 7{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}14y + x + 11 = 70{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}14y + x = 70 - 11{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}14y + x = 59{/tex} ....(iii)Substituting y = 33x - 95 in (iii), we get14(33x - 95) + x = 59{tex}\\Rightarrow{/tex}\xa0462x - 1330 + x = 59{tex}\\Rightarrow{/tex}\xa0463x = 59 + 1330{tex}\\Rightarrow{/tex}\xa0463x = 1389{tex}\\Rightarrow x = \\frac{{1389}}{{463}} = 3{/tex}Putting x = 3, in y = 33x - 95, we gety = 33 {tex}\\times{/tex}\xa03 - 95{tex}\\Rightarrow{/tex}\xa0y = 99 - 95 = 4{tex}\\Rightarrow{/tex} y = 4Hence, Solution of the given system of equation is x = 3, y = 4.
2391.

If 391 is divided into three parts proportional 1/2:2/3:3 then first part is

Answer»
2392.

Prove that : 12!/n!=1.3.5 ............ (2n-1).2^n

Answer»
2393.

Name the france system also used in ch-3

Answer»
2394.

If n+1!=60. n+1! , find n ? Solve it plz...

Answer»
2395.

Name the british system used in ch-3

Answer» Grade
2396.

1+45

Answer» 46
46
2397.

X+y=2,x+y=8

Answer» 6
2398.

Let R is relation to Q,R{(a,b):a,b€Q and a-b€Z}.Show that: (a-a)€R for all a€Q

Answer»
2399.

If a,b belongs to N and R is \'\'a is a divisor of b\'\',then prove that R is a relation on N

Answer»
2400.

x belongs to (A U B)\' =..?

Answer» A\'℅