Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 2251. |
√x-2/x-3 =y find the domain and range |
| Answer» | |
| 2252. |
√a^2 - x^2 =y then find the domain |
| Answer» | |
| 2253. |
Cos18 |
| Answer» | |
| 2254. |
1/√1-cosx find domain |
| Answer» | |
| 2255. |
Prove Cot 22½°=√2+1 |
| Answer» | |
| 2256. |
Show that the following conditions are equivalent - (a)AcB (b)A-B=0(c)AuB=B(d)AnB=A |
| Answer» Please give me answet of this question | |
| 2257. |
Solve the equationCotX + tanX = 2 |
| Answer» | |
| 2258. |
Is 4/1 a fraction? |
| Answer» No | |
| 2259. |
Which reference book is easily understandable |
| Answer» | |
| 2260. |
Hii Guys!!Aap ko maths kase lage.After pass the 10 class |
|
Answer» Aap maise kis ki jindagi jand(baker) ho gye hai maths laker Chapter 1 or 3 bekar h My fav. Maths is good bhot bekar |
|
| 2261. |
Clear the concept of set |
|
Answer» Set is a collection of well defined objects or things example student of class 11 of your school Set is a well -defined collection of objects. Example - english vowel A=(a, e, i o, u) |
|
| 2262. |
3x+2y>5 , y>2 |
| Answer» | |
| 2263. |
What are intervals |
| Answer» | |
| 2264. |
Find A-B if A=(set of natural numbers up to 15 ) |
|
Answer» And b is what 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 1 to 15 number |
|
| 2265. |
CosA+cosB=0=sinA+sinB then prove that cos2A+cos2B=-2cos(A+B) |
| Answer» | |
| 2266. |
Evaluate 1+¿^2+¿^4+¿^6....+¿^2n |
| Answer» | |
| 2267. |
If A=(a,b,c),B=(d)C=(2) then A×(BUC)=(A×B) U(A×C |
| Answer» A×(BUC) = (A×B) U(A×C)(a,b,c)×(d,2) =(a,b,c)×(d)U (a,b,c)× (2) | |
| 2268. |
What is universal set?? |
|
Answer» It\'s not about universal truth Example if you want to make set of all staff students and clerks group of your school so you can put by making set of teachers students and clerks in a one set and that set is called universal set |
|
| 2269. |
What is power set???? |
|
Answer» Power set is the only set which elements are again in set form The collection of all subsets of a set A is called the power set of A. All subset of set A is called power set |
|
| 2270. |
How to prove demorgan\'s law |
| Answer» | |
| 2271. |
Find the domain and range of the function f(x) is equal to square -9 upon x-3 |
| Answer» Here {tex}f(x) = \\frac{{{x^2} - 9}}{{x - 3}}{/tex}f (x) assume real values for all real values of x except for x - 3 = 0 i.e .x = 3Thus domain of f (x) = R - {3}Let f (x) = y{tex}\\therefore y = \\frac{{{x^2} - 9}}{{x - 3}} = \\frac{{(x + 3)(x - 3)}}{{(x - 3)}}{/tex}{tex} \\Rightarrow {/tex}\xa0y = x + 3y takes all real values except 6 as domain =R-{3}Thus range of f (x) = R - {6}. | |
| 2272. |
Which book is best for maths guide? |
| Answer» RD Sharma | |
| 2273. |
Prove that sec^2 a +cosec^2 a greater than equal to 4 |
| Answer» | |
| 2274. |
xpower4 - 125x |
| Answer» | |
| 2275. |
Find the value of (1+cos pi/8)(1+cos 3pi/8)(1+cos 5pi/8)(1+cos 7pi/8) |
| Answer» {tex}cos^4{/tex}\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0{tex}+ cos^4{/tex}\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}{tex}\xa0+ cos^4{/tex}\xa0{tex}\\frac { 5 \\pi } { 8 }{/tex}\xa0{tex}+ cos^4{/tex}\xa0{tex}\\frac { 7 \\pi } { 8 }{/tex}{tex}=\xa0cos^4{/tex}\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0{tex}+ cos^4{/tex}\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0{tex}+ cos^4{/tex}\xa0{tex}\\left( \\frac { \\pi } { 2 } + \\frac { \\pi } { 8 } \\right){/tex}\xa0{tex}+ cos^4{/tex}\xa0{tex}\\left( \\frac { \\pi } { 2 } + \\frac { 3 \\pi } { 8 } \\right){/tex}{tex}=\xa0cos^4{/tex}\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0{tex}+ cos^4{/tex}\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0{tex}+ sin^4{/tex}\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0{tex}+ sin^4{/tex}\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0[{tex}\\because{/tex}\xa0cos\xa0{tex}\\left( \\frac { \\pi } { 2 } + \\theta \\right){/tex}\xa0= - sin\xa0{tex}\\theta{/tex}]=\xa0(cos4\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0+\xa0sin4\xa0{tex}\\frac { \\pi } { 8 }{/tex}) + (cos4\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0+\xa0sin4\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex})= (cos4\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0+\xa0sin4\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0+ 2 sin2\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0cos2\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0- 2 sin2\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0cos2\xa0{tex}\\frac { \\pi } { 8 }{/tex}) + (cos4\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0+\xa0sin4\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0+ 2\xa0sin2\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0cos2\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0- 2\xa0sin2\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0cos2\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex})= (cos2\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0+\xa0sin2\xa0{tex}\\frac { \\pi } { 8 }{/tex})2\xa0- 2\xa0sin2\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0cos2\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0+ (cos2\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0+\xa0sin2\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex})2\xa0-\xa02\xa0sin2\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0cos2\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}[{tex}\\because{/tex}\xa0{tex}a^4 + b^4 = (a^2 + b^2) - 2a^2 b^2{/tex}]= 1\xa0-\xa0{tex}\\frac { 1 } { 2 }{/tex}\xa0(2 sin\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0cos\xa0{tex}\\frac { \\pi } { 8 }{/tex})2\xa0+ 1 -\xa0{tex}\\frac { 1 } { 2 }{/tex}\xa0(2 sin\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0cos\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex})2[{tex}\\because{/tex}\xa0{tex}sin^2\\theta + cos^2\\theta = 1{/tex}]= 2 -\xa0{tex}\\frac { 1 } { 2 }{/tex}\xa0(sin 2\xa0{tex}\\times \\frac { \\pi } { 8 } ) ^ { 2 }{/tex}\xa0-\xa0{tex}\\frac { 1 } { 2 }{/tex}\xa0(sin 2\xa0{tex}\\times \\frac { 3 \\pi } { 8 }{/tex})2 [{tex}\\because{/tex} sin 2x = 2 sinx cosx]= 2 -\xa0{tex}\\frac { 1 } { 2 }{/tex}\xa0sin2\xa0{tex}\\frac { \\pi } { 4 }{/tex}\xa0-\xa0{tex}\\frac { 1 } { 2 }{/tex}\xa0sin2\xa0{tex}\\frac { 3 \\pi } { 4 }{/tex}= 2 -\xa0{tex}\\frac { 1 } { 2 }{/tex}\xa0{tex}\\times \\left( \\frac { 1 } { \\sqrt { 2 } } \\right) ^ { 2 } - \\frac { 1 } { 2 } \\times \\left( \\frac { 1 } { \\sqrt { 2 } } \\right) ^ { 2 }{/tex}[{tex}\\because{/tex}\xa0sin\xa0{tex}\\frac { 3 \\pi } { 4 }{/tex}\xa0= sin\xa0{tex}\\left( \\pi - \\frac { \\pi } { 4 } \\right){/tex}\xa0= sin\xa0{tex}\\frac { \\pi } { 4 }{/tex}= {tex}\\frac1{\\sqrt2}{/tex}]= 2 -\xa0{tex}\\frac { 1 } { 2 } \\times \\frac { 1 } { 2 } - \\frac { 1 } { 2 } \\times \\frac { 1 } { 2 }{/tex}= 2 -\xa0{tex}\\frac { 1 } { 4 } - \\frac { 1 } { 4 }{/tex}\xa0= 2 -\xa0{tex}\\frac { 1 } { 2 } = \\frac { 3 } { 2 }{/tex}\u200b\u200b\u200b\u200b | |
| 2276. |
Are the set formula in syllabus? Of class 11th. |
| Answer» Yes, it is present in the syllabus. | |
| 2277. |
What is co domain |
| Answer» | |
| 2278. |
Ch5 ex5.3 question no.6 |
| Answer» | |
| 2279. |
Sin10.sin50.sin60.sin70=√3/16Prove it |
| Answer» | |
| 2280. |
Solve the inequations x+1/x+2>1 |
| Answer» | |
| 2281. |
{x:x is an integer,x²≤4 |
|
Answer» A={-2,-1,0,1,2} A={1,2} |
|
| 2282. |
Sin power 4 x - sec square x is equal to 10 4 x + tan squared x |
| Answer» | |
| 2283. |
Graphing |
| Answer» | |
| 2284. |
Let f(x)=x*x and g(x) =2x+1 be two real function . Find |
| Answer» | |
| 2285. |
1²+2²+3²______________+n²=n(n+1) = (2n+1) |
| Answer» | |
| 2286. |
What is parallex method |
|
Answer» Parallax\xa0is a method of measuring distance to an object. Similar to how our binocular vision helps us determine distance, the direction to a distant point is slightly different from two separate observation positions. The method where the position and direction of the object changes when we observe from some different position is called a parallex method . Let (N) is the near by star whose distance D from the earth is to be found F is far of star whose direction and position of earth in the orbital motion.When the earth is at A the parallax angle is (thita1) after six months the earth is at opposite position B the parallax angle become (thita2)(Thita)=(thita1)+(thita2)(Thita)=Parallex angle. |
|
| 2287. |
Find 1-3+5-7+9-11+... To n term |
| Answer» | |
| 2288. |
cos9x-cos5x -sin2x---------------------= ------------sin17x-sin3x cos10x |
| Answer» | |
| 2289. |
Meaning of difference of set |
| Answer» The well defined collection of different elements or objects is called set. | |
| 2290. |
Exercise3.4 ncert question is 9 |
| Answer» Sinx + sin5x + sin3x=02sin3x cos2x + sin3x =0Sin3x(2cos2x+1)=0If sin3x=03x=n(pie);n€zIf Cos2x+1=0Cos2x=-1/2Cos2x=cos2(pie)/3 | |
| 2291. |
Prove that cos theta divided by1+ sin theta=tan (pi by4-theta by 2 |
| Answer» | |
| 2292. |
Solve for x : |4x-3|≥1 |
| Answer» | |
| 2293. |
What is mean by write the following as intervals |
| Answer» | |
| 2294. |
X-5=7 |
|
Answer» x=12 X=7+5X=12 X=7+5=12 |
|
| 2295. |
Sin inverse x plus cos inverse x equal to |
| Answer» π/2 | |
| 2296. |
Find x and y of equation (2/3x-3/4y)+5/9yi=1-2i |
| Answer» | |
| 2297. |
Find x and y of equation 7x+5iy=14+5i |
| Answer» | |
| 2298. |
Range or domane 25question |
| Answer» Ufg | |
| 2299. |
How to identify a set |
| Answer» A set is a collection of distinct objects, considered as an object in its own right. In other words, you can say that it is something put in brackets which is a collection. | |
| 2300. |
If P(A)=P(B) ,then show that A=B |
| Answer» Let | |