Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

2251.

√x-2/x-3 =y find the domain and range

Answer»
2252.

√a^2 - x^2 =y then find the domain

Answer»
2253.

Cos18

Answer»
2254.

1/√1-cosx find domain

Answer»
2255.

Prove Cot 22½°=√2+1

Answer»
2256.

Show that the following conditions are equivalent - (a)AcB (b)A-B=0(c)AuB=B(d)AnB=A

Answer» Please give me answet of this question
2257.

Solve the equationCotX + tanX = 2

Answer»
2258.

Is 4/1 a fraction?

Answer» No
2259.

Which reference book is easily understandable

Answer»
2260.

Hii Guys!!Aap ko maths kase lage.After pass the 10 class

Answer» Aap maise kis ki jindagi jand(baker) ho gye hai maths laker
Chapter 1 or 3 bekar h
My fav.
Maths is good
bhot bekar
2261.

Clear the concept of set

Answer» Set is a collection of well defined objects or things example student of class 11 of your school
Set is a well -defined collection of objects. Example - english vowel A=(a, e, i o, u)
2262.

3x+2y>5 , y>2

Answer»
2263.

What are intervals

Answer»
2264.

Find A-B if A=(set of natural numbers up to 15 )

Answer» And b is what
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
1 to 15 number
2265.

CosA+cosB=0=sinA+sinB then prove that cos2A+cos2B=-2cos(A+B)

Answer»
2266.

Evaluate 1+¿^2+¿^4+¿^6....+¿^2n

Answer»
2267.

If A=(a,b,c),B=(d)C=(2) then A×(BUC)=(A×B) U(A×C

Answer» A×(BUC) = (A×B) U(A×C)(a,b,c)×(d,2) =(a,b,c)×(d)U (a,b,c)× (2)
2268.

What is universal set??

Answer» It\'s not about universal truth
Example if you want to make set of all staff students and clerks group of your school so you can put by making set of teachers students and clerks in a one set and that set is called universal set
2269.

What is power set????

Answer» Power set is the only set which elements are again in set form
The collection of all subsets of a set A is called the power set of A.
All subset of set A is called power set
2270.

How to prove demorgan\'s law

Answer»
2271.

Find the domain and range of the function f(x) is equal to square -9 upon x-3

Answer» Here {tex}f(x) = \\frac{{{x^2} - 9}}{{x - 3}}{/tex}f (x) assume real values for all real values of x except for x - 3 = 0 i.e .x = 3Thus domain of f (x) = R - {3}Let f (x) = y{tex}\\therefore y = \\frac{{{x^2} - 9}}{{x - 3}} = \\frac{{(x + 3)(x - 3)}}{{(x - 3)}}{/tex}{tex} \\Rightarrow {/tex}\xa0y = x + 3y takes all real values except 6 as domain =R-{3}Thus range of f (x) = R - {6}.
2272.

Which book is best for maths guide?

Answer» RD Sharma
2273.

Prove that sec^2 a +cosec^2 a greater than equal to 4

Answer»
2274.

xpower4 - 125x

Answer»
2275.

Find the value of (1+cos pi/8)(1+cos 3pi/8)(1+cos 5pi/8)(1+cos 7pi/8)

Answer» {tex}cos^4{/tex}\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0{tex}+ cos^4{/tex}\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}{tex}\xa0+ cos^4{/tex}\xa0{tex}\\frac { 5 \\pi } { 8 }{/tex}\xa0{tex}+ cos^4{/tex}\xa0{tex}\\frac { 7 \\pi } { 8 }{/tex}{tex}=\xa0cos^4{/tex}\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0{tex}+ cos^4{/tex}\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0{tex}+ cos^4{/tex}\xa0{tex}\\left( \\frac { \\pi } { 2 } + \\frac { \\pi } { 8 } \\right){/tex}\xa0{tex}+ cos^4{/tex}\xa0{tex}\\left( \\frac { \\pi } { 2 } + \\frac { 3 \\pi } { 8 } \\right){/tex}{tex}=\xa0cos^4{/tex}\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0{tex}+ cos^4{/tex}\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0{tex}+ sin^4{/tex}\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0{tex}+ sin^4{/tex}\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0[{tex}\\because{/tex}\xa0cos\xa0{tex}\\left( \\frac { \\pi } { 2 } + \\theta \\right){/tex}\xa0= - sin\xa0{tex}\\theta{/tex}]=\xa0(cos4\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0+\xa0sin4\xa0{tex}\\frac { \\pi } { 8 }{/tex}) + (cos4\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0+\xa0sin4\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex})= (cos4\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0+\xa0sin4\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0+ 2 sin2\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0cos2\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0- 2 sin2\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0cos2\xa0{tex}\\frac { \\pi } { 8 }{/tex}) + (cos4\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0+\xa0sin4\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0+ 2\xa0sin2\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0cos2\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0- 2\xa0sin2\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0cos2\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex})= (cos2\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0+\xa0sin2\xa0{tex}\\frac { \\pi } { 8 }{/tex})2\xa0- 2\xa0sin2\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0cos2\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0+ (cos2\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0+\xa0sin2\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex})2\xa0-\xa02\xa0sin2\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0cos2\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}[{tex}\\because{/tex}\xa0{tex}a^4 + b^4 = (a^2 + b^2) - 2a^2 b^2{/tex}]= 1\xa0-\xa0{tex}\\frac { 1 } { 2 }{/tex}\xa0(2 sin\xa0{tex}\\frac { \\pi } { 8 }{/tex}\xa0cos\xa0{tex}\\frac { \\pi } { 8 }{/tex})2\xa0+ 1 -\xa0{tex}\\frac { 1 } { 2 }{/tex}\xa0(2 sin\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex}\xa0cos\xa0{tex}\\frac { 3 \\pi } { 8 }{/tex})2[{tex}\\because{/tex}\xa0{tex}sin^2\\theta + cos^2\\theta = 1{/tex}]= 2 -\xa0{tex}\\frac { 1 } { 2 }{/tex}\xa0(sin 2\xa0{tex}\\times \\frac { \\pi } { 8 } ) ^ { 2 }{/tex}\xa0-\xa0{tex}\\frac { 1 } { 2 }{/tex}\xa0(sin 2\xa0{tex}\\times \\frac { 3 \\pi } { 8 }{/tex})2 [{tex}\\because{/tex} sin 2x = 2 sinx cosx]= 2 -\xa0{tex}\\frac { 1 } { 2 }{/tex}\xa0sin2\xa0{tex}\\frac { \\pi } { 4 }{/tex}\xa0-\xa0{tex}\\frac { 1 } { 2 }{/tex}\xa0sin2\xa0{tex}\\frac { 3 \\pi } { 4 }{/tex}= 2 -\xa0{tex}\\frac { 1 } { 2 }{/tex}\xa0{tex}\\times \\left( \\frac { 1 } { \\sqrt { 2 } } \\right) ^ { 2 } - \\frac { 1 } { 2 } \\times \\left( \\frac { 1 } { \\sqrt { 2 } } \\right) ^ { 2 }{/tex}[{tex}\\because{/tex}\xa0sin\xa0{tex}\\frac { 3 \\pi } { 4 }{/tex}\xa0= sin\xa0{tex}\\left( \\pi - \\frac { \\pi } { 4 } \\right){/tex}\xa0= sin\xa0{tex}\\frac { \\pi } { 4 }{/tex}= {tex}\\frac1{\\sqrt2}{/tex}]= 2 -\xa0{tex}\\frac { 1 } { 2 } \\times \\frac { 1 } { 2 } - \\frac { 1 } { 2 } \\times \\frac { 1 } { 2 }{/tex}= 2 -\xa0{tex}\\frac { 1 } { 4 } - \\frac { 1 } { 4 }{/tex}\xa0= 2 -\xa0{tex}\\frac { 1 } { 2 } = \\frac { 3 } { 2 }{/tex}\u200b\u200b\u200b\u200b
2276.

Are the set formula in syllabus? Of class 11th.

Answer» Yes, it is present in the syllabus.
2277.

What is co domain

Answer»
2278.

Ch5 ex5.3 question no.6

Answer»
2279.

Sin10.sin50.sin60.sin70=√3/16Prove it

Answer»
2280.

Solve the inequations x+1/x+2>1

Answer»
2281.

{x:x is an integer,x²≤4

Answer» A={-2,-1,0,1,2}
A={1,2}
2282.

Sin power 4 x - sec square x is equal to 10 4 x + tan squared x

Answer»
2283.

Graphing

Answer»
2284.

Let f(x)=x*x and g(x) =2x+1 be two real function . Find

Answer»
2285.

1²+2²+3²______________+n²=n(n+1) = (2n+1)

Answer»
2286.

What is parallex method

Answer» Parallax\xa0is a method of measuring distance to an object. Similar to how our binocular vision helps us determine distance, the direction to a distant point is slightly different from two separate observation positions.
The method where the position and direction of the object changes when we observe from some different position is called a parallex method .
Let (N) is the near by star whose distance D from the earth is to be found F is far of star whose direction and position of earth in the orbital motion.When the earth is at A the parallax angle is (thita1) after six months the earth is at opposite position B the parallax angle become (thita2)(Thita)=(thita1)+(thita2)(Thita)=Parallex angle.
2287.

Find 1-3+5-7+9-11+... To n term

Answer»
2288.

cos9x-cos5x -sin2x---------------------= ------------sin17x-sin3x cos10x

Answer»
2289.

Meaning of difference of set

Answer» The well defined collection of different elements or objects is called set.
2290.

Exercise3.4 ncert question is 9

Answer» Sinx + sin5x + sin3x=02sin3x cos2x + sin3x =0Sin3x(2cos2x+1)=0If sin3x=03x=n(pie);n€zIf Cos2x+1=0Cos2x=-1/2Cos2x=cos2(pie)/3
2291.

Prove that cos theta divided by1+ sin theta=tan (pi by4-theta by 2

Answer»
2292.

Solve for x : |4x-3|≥1

Answer»
2293.

What is mean by write the following as intervals

Answer»
2294.

X-5=7

Answer» x=12
X=7+5X=12
X=7+5=12
2295.

Sin inverse x plus cos inverse x equal to

Answer» π/2
2296.

Find x and y of equation (2/3x-3/4y)+5/9yi=1-2i

Answer»
2297.

Find x and y of equation 7x+5iy=14+5i

Answer»
2298.

Range or domane 25question

Answer» Ufg
2299.

How to identify a set

Answer» A set is a collection of distinct objects, considered as an object in its own right. In other words, you can say that it is something put in brackets which is a collection.
2300.

If P(A)=P(B) ,then show that A=B

Answer» Let