Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

401.

Find the equations of the tangent and the normal to the given curve at the indicated point : `y = x^(3) - 2x + 7 " at " (1, 6)`

Answer» Correct Answer - `x - y + 5 = 0, x + y - 7 = 0`
402.

Find the equations of the tangent and the normal to the given curve at the indicated point : `y = cot^(2) x - 2 cot x + 2 " at " x = (pi)/(4)`

Answer» Correct Answer - `y = 1, x = (pi)/(4)`
403.

Find the equations of the tangent and the normal to the given curve at the indicated point : `16x^(2) + 9y^(2) = 144 " at " (2, y_(1)), " where " y_(1) gt 0`

Answer» Correct Answer - `8x + 3 sqrt5 y - 36 = 0, 9 sqrt5x - 24y + 14 sqrt5 = 0`
404.

If V denotes the volume and S is the surface area of a sphere. If radius of sphere is 2 cm, then the rate of change of V w.r.t. S isA. 2 cmB. 1 cmC. 2 cm/secD. 1 cm/sec

Answer» Correct Answer - B
405.

Acute angle between two curve `x^(2)+y^(2)=a^(2)sqrt2` and `x^(2)-y^(2)=a^(2)` isA. `(pi)/(6)`B. `(pi)/(3)`C. `(pi)/(4)`D. none of these

Answer» Correct Answer - C
`x^(2)+y^(2)=a^(2)sqrt2 and x^(2)-y^(2)=a^(2)`
`therefore" "(dy)/(dx)=(-x)/(y),(dy)/(dx)=(x)/(y)`
Angle between curves is given by
`theta=|tan^(-1).((x)/(y)+(x)/(y))/(1-(x^(2))/(y^(2)))|`
`=|tan^(-1).(2xy)/(y^(2)-x^(2))|`
Squaring and subtracting the equations of given curves,
`4x^(2)y^(2)=a^(4)`
`therefore" "2xy= pm a^(2)`
`therefore" "theta=|tan^(-1).(a^(2))/(a^(2))|`
`=tan^(-1)(1)`
`=(pi)/(4)`
406.

The rate of change of volume of a sphere is equalto the rate of change of its radius, then its radius is equal to(a) 1 unit(b)units(c)unit(d)unitA. 1B. 2C. 0.5D. none of these

Answer» Correct Answer - B
`V=(4)/(3)pir^(3)`
`therefore" "(dV)/(dt)=(4)/(3)pi.3r^(2)(dr)/(dt)`
Given `(dV)/(dt)=(dr)/(dt)`
`therefore" "r^(2)=(1)/(4pi) rArr r=(1)/(2sqrtpi)`
`therefore" "k=2`
407.

The length x of a rectangle is decreasing at therate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute.When x = 8cm and y = 6cm, find the rates of change of (a) the perimeter, and(b) the area of the rectangle

Answer» Given that `(dx)/(dt) = -5 cm`/minute and `(dy)/(dt)` = 4 cm/minute.
(i) Let P be the perimeter of the rectangle at any instant. Then,
`P = 2(x +y) rArr (dP)/(dt) = 2 ((dx)/(dt) + (dy)/(dt)) = 2 (-5 + 4)` cm/minute
Hence, the perimeter of the rectangle is decreasing at the rate of 2 cm/minute.
(ii) Let A the area of the rectangle at any instant. Then,
`A = x.y rArr (dA)/(dt) = (dx)/(dt) .y + x.(dy)/(dt)`
`= [(-5) xx 6 + 8 xx4] cm^(2)`/minute
`= 2 cm^(2)`/minute
Hence the area of the rectangle is increasing at the rate of `2 cm^(2)`/minute.
408.

The length x of a rectangle is increasing at the rate of 3 cm/sec. and the width y is increasing at the rate of 2 cm/sec. If x=10 cm and y=6 cm, then the rate of change of its area isA. `2 cm^(2)//sec`B. `-2 cm^(2)//sec`C. `38 cm^(2)//sec`D. `-38 cm^(2)//sec`

Answer» Correct Answer - C
409.

Which of the following pair(s) of family is/are orthogonl? where c and k are arbitrary constant.A. `16x^(2)+y^(2)=c and y^(16)=kx`B. `y=x+ce^(-x) and x+2=y+ke^(-y)`C. `y=cx^(2) and x^(2)+2y^(2)=k`D. `x^(2)-y^(2)=c and xy =k`

Answer» Correct Answer - A::B::C::D
(a) `16x^(2)+y^(2)=c rArr(dy)/(dx)=m_(1)=-(16x)/(y)`
`y^(16)=kx" "rArr " "(dy)/(dx)=m_(2)=(k)/(16y^(15))`
`m_(1)m_(2)=-(16x)/(y).(k)/(16y^(15))`
`=-(x)/(y^(16)).k`
`=-(x)/(y^(16)).(y^(16))/(x)=-1`
`rArr" Curves are orthogonal."`
(b) `y=x+ce^(-x)`
`rArr" "(dy)/(dx)=1-ce^(-x)=1-(y-x)=-(y-x-1)`
`x+2=y+ke^(-y)`
`rArr" "(dy)/(dx)-k(dy)/(dx)e^(-y)=1`
`rArr" "(dy)/(dx)[1-ke^(-y)]=1`
`"or "[1-(x+2-y)](dy)/(dx)=1`
`rArr" "(dy)/(dx)=m_(2)=(1)/(y-x-1)`
`rArr: "m_(1)m_(2)=-1`
`rArr" Curves are orthogonal."`
(c) `y=cx^(2)`
`rArr" "(dy)/(dx)=2cx=2x(y)/(x^(2))=(2y)/(x)=m_(1)`
`"and "x^(2)+2y^(2)=k`
`rArr" "2x+4y(dy)/(dx)=0`
`rArr" "(dy)/(dx)=-(x)/(2y)=m_(2)`
`rArr" "m_(1)m_(2)=-1`
`rArr" Curves are orthogonal."`
(c) `x^(2)-y^(2)=c rArr (dy)/(dx)=(x)/(y)=m_(1)`
`xy=k rArr (dy)/(dx)=-(y)/(x)=m_(2)`
`therefore" "m_(1)m_(2)=-1`
`rArr" Curves are orthogonal."`
410.

The eccentricity of the ellipse `3x^2+4y^2=12` is decreasing at the rate of 0.1 per sec.The time at which it will coincide with auxiliary circle is:A. 2 secondsB. 3 secondsC. 5 secondsD. 6 seconds

Answer» Correct Answer - C
Eccentricity of ellipse `=(1)/(2)`
`(de)/(dt)=-0.1" (given)"`
Eccentricity of auxiliary circle = 0
`rArr" "int_(1//2)^(0)de=-0.1 int_(0)^(T)dt`
T is time at which it will touch the auxiliary circle.
`rArr" "-(1)/(2)=-0.1 (T-0)" "thereforeT=5 " seconds."`
411.

The rate of change of the area of a circle with respect to its radius r at r = 6 cm is:A. `10pi`B. `12pi`C. `8pi`D. `11pi`

Answer» Correct Answer - B
Let r be the radius and A be the area of the circle.
`:. A = pi r^(2)`
`rArr (dA)/(dr) = 2 pi r`
at r = 6 cm
` (dA)/(dr) = 2pi xx 6 = 12 pi cm^(2)`/sec
412.

The rate of change of `sqrt(x^2+16)` with respect to `x/(x-1)` at `x=3` isA. 1B. `(11)/(5)`C. `-(12)/(5)`D. `-3`

Answer» Correct Answer - C
`u=sqrt(x^(2)+16)`
`therefore" "(du)/(dx)=(2x)/(2sqrt(x^(2)+16))=(x)/(sqrt(x^(2)+16))`
`v=(x)/(x-1)`
`rArr" "(dv)/(dx)=(-1)/((x-1)^(2))`
`therefore" "(du)/(dv)=(du//dx)/(dv//dx)=(-12)/(5)`
413.

Find the rate of change of the area of a circle with respect to its radius r when(a) `r = 3 c m` (b) `r = 4 c m`

Answer» Let radius of circle be r and area be A.
Area A = `pi r^(2)`
`rArr (dA)/(dr) = pi (2r)`
(a) at r = 3 cm
` (dA)/(dr) = pi xx 2 xx 3 = 6 pi cm^(2)//sec`
(b) at r = 4 cm
` (dA)/(dr) = pi xx 2 xx 4 = 8 pi cm^(2) //sec`
414.

The total revenue of selling of x units of a product is represented by `R (x) = 2x^(2)+x+5`.Find its marginal revenue for 5 units.

Answer» Correct Answer - Rs. 21
For x units, marginal revenue =`(dR)/(dx)`