Right choice is (d) All of the mentionedExplanation: RXX(l)=\(\sum_{n=-\infty}^{\infty} x(n)x(n-l)\) For l≥0, rxx(l)=\(\sum_{n=l}^{\infty} x(n)x(n-l)\) =\(\sum_{n=l}^{\infty} a^n a^{n-l}\) =\(a^{-l}\sum_{n=l}^{\infty} a^{2N}\) =\(\frac{1}{1-a^2}a^l\)(l≥0)For l<0, rxx(l)=\(\sum_{n=0}^{\infty} x(n)x(n-l)\) =\(\sum_{n=0}^\infty a^n a^{n-l}\) =\(a^{-l}\sum_{n=0}^{\infty} a^{2n}\) =\(\frac{1}{1-a^2}a^{-l}\) So, rxx(l)=\(\frac{1}{1-a^2}a^{|l|}\) (-∞
Your experience on this site will be improved by allowing cookies. Read Cookie Policy