1.

The value of parameter t so that the line `(4-t)x+ty+(a^(3)-1)=0` is normal to the curve xy = 1 may lie in the intervalA. `(1,4)`B. `(-oo,0)uu(4,oo)`C. `(-4,4)`D. `[3,4]`

Answer» Correct Answer - B
Slope of line `(4-t)x+ty+(a^(3)-1)=0" is "(t-4)/(t)`
For `xy=1, (dy)/(dx)=(-y)/(x)=(-1)/(x^(2))`
`therefore" Slope of normal "=-x^(2)=(t-4)/(t)`
As `x^(2)gt0,(t-4)/(t)gt0`
`therefore" "t in (-oo,0)uu(4,oo)`


Discussion

No Comment Found

Related InterviewSolutions