Saved Bookmarks
| 1. |
The total cost `C(x)` of producing `x` items in a firm is given by `C(x)=0.0005x^3-0.002x^2+30x+6000` Find the marginal cost when `4` units are produced |
|
Answer» Given: `C(x) = 0.005 x^(3) - 0.02 x^(2) + 30x + 6000` `rArr MC = (dC)/(dx)` `= (d)/(dx) (0.005 x^(3) - 0.02x^(2) + 30x + 6000)` `= {(0.005 xx 3x^(2)) - (0.02 xx 2x) + 30}` `rArr [MC]_(x = 4) = {(0.005 xx 3 xx 4^(2)) - (0.02 xx 2 xx 4) + 30}` `= (0.24 - 0.16 + 30) = 30.08` Hence, the required marginal cost is Rs 30.08 |
|