1.

The total cost `C(x)` of producing `x` items in a firm is given by `C(x)=0.0005x^3-0.002x^2+30x+6000` Find the marginal cost when `4` units are produced

Answer» Given: `C(x) = 0.005 x^(3) - 0.02 x^(2) + 30x + 6000`
`rArr MC = (dC)/(dx)`
`= (d)/(dx) (0.005 x^(3) - 0.02x^(2) + 30x + 6000)`
`= {(0.005 xx 3x^(2)) - (0.02 xx 2x) + 30}`
`rArr [MC]_(x = 4) = {(0.005 xx 3 xx 4^(2)) - (0.02 xx 2 xx 4) + 30}`
`= (0.24 - 0.16 + 30) = 30.08`
Hence, the required marginal cost is Rs 30.08


Discussion

No Comment Found

Related InterviewSolutions