Saved Bookmarks
| 1. |
Prove that `tan x gt x` for all `x in [0, (pi)/(2)]` |
|
Answer» Let c be an arbitrary real number such that `c in [0, (pi)/(2)]` Let f(x) `= tan x - x` for all `x in [0, c]` `:. F(x) = sec^(2) x - 1 = tan^(2) x gt 0` for all `x in [0, c]` Thus, f(x) is increasing on [0, c] Now, `x gt 0 rArr f(x) gt f(0)` `rArr f(x) gt0` `rArr tan x - x gt 0` `rArr tan x gt x` |
|