Saved Bookmarks
| 1. |
Prove that `int_0^x[cot^(-1)x]dx ,w h e r e[dot]`denotes the greatest integer function. |
|
Answer» Correct Answer - `pi+cot1+cot2` We have `int_(-pi//2)^(2pi)[cot^(-1)x]dx` We have that `cot^(-1)xepsilon[0,pi]` so `[cot^(-1)x]=0` for `cot^(-1)x epsilon(0,1)` or `xepsilon(cot1,oo)` `[cot^(-1)x]=1` for `cot^(-1)xepsilon[1,2)` or `xepsilon(cot2, cot1]` `[cot^(-1)x=2` for `cot^(-1)x epsilon[2,3)` or `x epsilon(cot3, cot2]` `[cot^(-1)x]=3` for `cot^(-1)xepsilon[3,pi)` or `x epsilon(-oo,cot3]` `:. int_(cot1)^(2pi) 0dx+int_(cot2)^(cot1) 1dx+int_(-pi//2)^(cot2) 2dx` `=cot1-cot2+2cot2+pi` `=cot1+cot2+pi` |
|