Saved Bookmarks
| 1. |
Prove that f (x) = `e^(3x)` is strictly increasing function on R. |
|
Answer» `f(x) = e^(3x)` `"Let "x_91), x_(2) in R and x_(1) lt x_(2)` `"Now "x_(1)lt x_(2)` `rArr " "3x_(1) lt 3x_(2)` `rArr" "e^(3x_(1))lt e^(3x_(2))` `rArr" "f(x_(1))lt f(x_(2))` `:. " "x_(1) lt x_(2)` `rArr" "f(x_(1)) lt f(x_(2)) forall x_(1), x_(2) in R` `rArr` f(x) is strictly increasing function on R. |
|