1.

Prove that f (x) = `e^(3x)` is strictly increasing function on R.

Answer» `f(x) = e^(3x)`
`"Let "x_91), x_(2) in R and x_(1) lt x_(2)`
`"Now "x_(1)lt x_(2)`
`rArr " "3x_(1) lt 3x_(2)`
`rArr" "e^(3x_(1))lt e^(3x_(2))`
`rArr" "f(x_(1))lt f(x_(2))`
`:. " "x_(1) lt x_(2)`
`rArr" "f(x_(1)) lt f(x_(2)) forall x_(1), x_(2) in R`
`rArr` f(x) is strictly increasing function on R.


Discussion

No Comment Found

Related InterviewSolutions