1.

Let `S_n=sum_(k=0)^n n/(n^2+k n+k^2) and T_n=sum_(k=0)^(n-1)n/(n^2+k n+k^2)`,for `n=1,2,3,.......,` thenA. `S_(n)lt(pi)/(3sqrt(3))`B. `S_(n)gt(pi)/(3sqrt(3))`C. `T_(n) lt (pi)/(3sqrt(3))`D. `T_(n)gt(pi)/(3sqrt(3))`

Answer» Correct Answer - A::D
`S_(n)lt lim_(nto oo) S_(n)=lim_(n to oo) sum_(k=1)^(n)1/n 1/(1+k//n+(k//n)^(2))`
`=int_(0)^(1)(dx)/(1+x+x^(2))`
`=int_(0)^(1)(dx)/((x+1/2)^(2)+3/4)`
`=[2/(sqrt(3))"tan"^(-1)((x+1/2)/((sqrt(3))/2))]_(0)^(1)=(pi)/(3sqrt(3))`
Now `T_(n)gt(pi)/(3sqrt(3))`as
`h sum_(k=0)^(n-1)f(k//n)gt int_(0)^(1)f(x)dxgt h sum_(k=1)^(n)f(k//n)`


Discussion

No Comment Found