Saved Bookmarks
| 1. |
Let `S_n=sum_(k=0)^n n/(n^2+k n+k^2) and T_n=sum_(k=0)^(n-1)n/(n^2+k n+k^2)`,for `n=1,2,3,.......,` thenA. `S_(n)lt(pi)/(3sqrt(3))`B. `T_(n)lt(pi)/(3sqrt(3))`C.D. `T_(n)gt(pi)/(3sqrt(3))` |
|
Answer» Correct Answer - A::D Given , `S_(n)=sum_(k=n)^(n)(n)/(n^(2)+kn+k^(2))` `=sum_(k=0)^(1)(1)/(n) *((1)/(1+(k)/(n)+(k^(2))/(n^(2))))ltunderset(n tooo)(lim)sum_(k=0)^(n)(1)/(n)((1)/(1+(k)/(n)+((k)/(n))^(2)))` `=int_(0)^(1)(1)/(1+x+x^(2))dx` `= [(2)/(sqrt(3))tan^(-1)((2)/(sqrt(3))(x+(1)/(2)))]_(0)^(1)` ` = (2)/(sqrt(3))*((pi)/(3)-(pi)/(6))=(pi)/(3sqrt(3))i.e S_(n)lt(pi)/(3sqrt(3))` Similarly , `T_(n)gt(pi)/(3sqrt(3))` |
|