Saved Bookmarks
| 1. |
Let m,n be two positive real numbers and define `f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx` and `g(m,n)=int_(0)^(1)x^(m-1)(1-m)^(n-1)dx`. It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0. `int_(0)^(oo)(x^(m-1))/((1+x)^(m+n))dx=`A. g(m,n)B. `g(m-1,n)`C. `g(m-1,n-1)`D. `g(m,n-1)` |
|
Answer» Correct Answer - A `g(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dt` Put `x=(1)/(1+y)` `rArr" "g(m,n)=int_(oo)^(0)(1)/((1+y)^(m-1))(1-(1)/(1+y))^(n-1)(-(1)/((1+y)^(2)))dy` `" "=int_(0)^(oo)(y^(n-1))/((1+y)^(m+n))dy` `" "=int_(0)^(oo)(x^(n-1))/((1+x)^(m+n))dx` |
|